Properties

Label 2.59.ax_jq
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 - 12 x + 59 x^{2} )( 1 - 11 x + 59 x^{2} )$
  $1 - 23 x + 250 x^{2} - 1357 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.214641822575$, $\pm0.245953251861$
Angle rank:  $2$ (numerical)
Jacobians:  $0$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2352$ $12023424$ $42389032896$ $146990927301120$ $511182677845377552$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $37$ $3453$ $206392$ $12130601$ $715016507$ $42180818886$ $2488649436233$ $146830398215761$ $8662995490968328$ $511116751838122653$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.am $\times$ 1.59.al and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.ab_ao$2$(not in LMFDB)
2.59.b_ao$2$(not in LMFDB)
2.59.x_jq$2$(not in LMFDB)