Properties

Label 2.59.ax_jm
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $1 - 23 x + 246 x^{2} - 1357 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.155667863679$, $\pm0.289401932737$
Angle rank:  $2$ (numerical)
Number field:  4.0.552857.1
Galois group:  $D_{4}$
Jacobians:  $12$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2348$ $11993584$ $42332026256$ $146936419967168$ $511152420522585988$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $37$ $3445$ $206116$ $12126105$ $714974187$ $42180657814$ $2488651370809$ $146830441698033$ $8662995935701756$ $511116754398709605$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The endomorphism algebra of this simple isogeny class is 4.0.552857.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.x_jm$2$(not in LMFDB)