Properties

Label 2.59.ak_de
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $1 - 10 x + 82 x^{2} - 590 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.186116644448$, $\pm0.558558712342$
Angle rank:  $2$ (numerical)
Number field:  4.0.61024400.1
Galois group:  $D_{4}$
Jacobians:  $144$
Isomorphism classes:  192
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2964$ $12342096$ $42117198084$ $146826510854400$ $511184496028932804$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $50$ $3546$ $205070$ $12117038$ $715019050$ $42181102026$ $2488650287110$ $146830436050078$ $8662995906846530$ $511116751624811706$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The endomorphism algebra of this simple isogeny class is 4.0.61024400.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.k_de$2$(not in LMFDB)