Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 10 x + 82 x^{2} - 590 x^{3} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.186116644448$, $\pm0.558558712342$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.61024400.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $144$ |
| Isomorphism classes: | 192 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2964$ | $12342096$ | $42117198084$ | $146826510854400$ | $511184496028932804$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $50$ | $3546$ | $205070$ | $12117038$ | $715019050$ | $42181102026$ | $2488650287110$ | $146830436050078$ | $8662995906846530$ | $511116751624811706$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 144 curves (of which all are hyperelliptic):
- $y^2=55 x^6+52 x^5+42 x^4+37 x^3+x^2+56 x+44$
- $y^2=33 x^6+6 x^5+38 x^4+53 x^3+19 x^2+45 x+46$
- $y^2=18 x^6+7 x^5+16 x^4+12 x^3+13 x^2+55 x+42$
- $y^2=32 x^6+36 x^5+42 x^3+19 x^2+19 x+39$
- $y^2=33 x^6+50 x^5+11 x^4+20 x^3+12 x^2+50 x+6$
- $y^2=8 x^6+51 x^5+12 x^4+41 x^3+58 x^2+31 x+47$
- $y^2=11 x^6+40 x^5+55 x^4+17 x^3+x^2+30 x+58$
- $y^2=4 x^6+14 x^5+20 x^4+36 x^3+54 x^2+3 x+6$
- $y^2=13 x^6+15 x^5+27 x^4+39 x^3+55 x^2+52 x+58$
- $y^2=10 x^6+30 x^5+22 x^4+10 x^3+30 x^2+19 x+29$
- $y^2=41 x^6+45 x^5+50 x^4+32 x^3+30 x^2+20 x+55$
- $y^2=35 x^6+31 x^5+7 x^4+33 x^3+54 x^2+34 x+51$
- $y^2=45 x^6+33 x^5+x^4+53 x^3+19 x^2+11 x+58$
- $y^2=43 x^6+18 x^5+34 x^4+28 x^3+17 x^2+24 x+31$
- $y^2=10 x^6+12 x^5+4 x^4+50 x^3+50 x^2+22 x+23$
- $y^2=33 x^6+36 x^5+31 x^4+20 x^3+54 x^2+32$
- $y^2=21 x^6+42 x^5+5 x^4+46 x^3+20 x^2+12 x+11$
- $y^2=10 x^6+20 x^5+20 x^4+52 x^3+19 x^2+42 x+22$
- $y^2=16 x^6+8 x^5+46 x^4+52 x^3+32 x^2+45 x+48$
- $y^2=27 x^6+36 x^5+27 x^4+9 x^3+17 x^2+2 x$
- and 124 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is 4.0.61024400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.k_de | $2$ | (not in LMFDB) |