Invariants
Base field: | $\F_{59}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x + 71 x^{2} - 354 x^{3} + 3481 x^{4}$ |
Frobenius angles: | $\pm0.260933791315$, $\pm0.594267124648$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{14})\) |
Galois group: | $C_2^2$ |
Jacobians: | $186$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3193$ | $12494209$ | $42180449584$ | $146882233359225$ | $511176848617702873$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $3588$ | $205380$ | $12121636$ | $715008354$ | $42180365526$ | $2488646021286$ | $146830431636676$ | $8662995818654940$ | $511116752375465028$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 186 curves (of which all are hyperelliptic):
- $y^2=39 x^6+38 x^5+26 x^4+37 x^3+29 x^2+27 x+44$
- $y^2=32 x^6+4 x^5+47 x^4+29 x^3+22 x^2+42$
- $y^2=16 x^6+40 x^5+x^4+27 x^3+57 x^2+41 x+30$
- $y^2=28 x^6+6 x^5+40 x^4+35 x^3+17 x^2+44 x+28$
- $y^2=50 x^6+19 x^5+37 x^4+31 x^3+52 x^2+51 x+28$
- $y^2=5 x^6+26 x^5+16 x^4+12 x^3+39 x^2+40 x+10$
- $y^2=41 x^6+40 x^5+18 x^4+43 x^3+34 x^2+18 x+27$
- $y^2=23 x^6+42 x^5+41 x^4+14 x^3+52 x^2+44 x+31$
- $y^2=41 x^6+x^5+23 x^4+39 x^3+29 x^2+30 x+4$
- $y^2=32 x^6+29 x^5+39 x^4+36 x^3+36 x^2+51 x+3$
- $y^2=37 x^6+30 x^5+23 x^4+51 x^3+27 x^2+21 x+43$
- $y^2=13 x^6+41 x^5+31 x^4+25 x^3+36 x^2+12 x+58$
- $y^2=43 x^6+23 x^5+13 x^4+4 x^3+4 x^2+5 x+54$
- $y^2=27 x^6+58 x^5+11 x^4+51 x^3+18 x^2+9 x+27$
- $y^2=42 x^6+37 x^5+30 x^4+5 x^3+45 x^2+20 x+14$
- $y^2=52 x^6+32 x^5+51 x^4+21 x^3+51 x^2+54 x+8$
- $y^2=6 x^6+48 x^5+54 x^4+10 x^3+18 x^2+58 x+56$
- $y^2=2 x^6+42 x^5+38 x^4+24 x^3+51 x^2+40 x+26$
- $y^2=43 x^6+57 x^5+x^4+17 x^2+20 x+9$
- $y^2=22 x^6+30 x^5+46 x^4+39 x^3+39 x^2+13 x+17$
- and 166 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{6}}$.
Endomorphism algebra over $\F_{59}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{14})\). |
The base change of $A$ to $\F_{59^{6}}$ is 1.42180533641.aeuja 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-42}) \)$)$ |
- Endomorphism algebra over $\F_{59^{2}}$
The base change of $A$ to $\F_{59^{2}}$ is the simple isogeny class 2.3481.ec_lmh and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{14})\). - Endomorphism algebra over $\F_{59^{3}}$
The base change of $A$ to $\F_{59^{3}}$ is the simple isogeny class 2.205379.a_aeuja and its endomorphism algebra is \(\Q(\sqrt{-3}, \sqrt{14})\).
Base change
This is a primitive isogeny class.