Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 2 x + 62 x^{2} - 118 x^{3} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.312125989322$, $\pm0.640203581959$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.25550136.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $240$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3424$ | $12545536$ | $42182217952$ | $146906420002816$ | $511140373962521824$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $58$ | $3602$ | $205390$ | $12123630$ | $714957338$ | $42179794562$ | $2488648663118$ | $146830459863454$ | $8662995835902010$ | $511116754194846002$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 240 curves (of which all are hyperelliptic):
- $y^2=40 x^6+35 x^4+27 x^3+48 x^2+26 x+12$
- $y^2=24 x^6+22 x^5+25 x^4+58 x^3+51 x^2+23 x+14$
- $y^2=52 x^6+5 x^5+58 x^4+29 x^3+21 x^2+3 x+37$
- $y^2=20 x^6+52 x^5+53 x^4+5 x^3+36 x^2+41 x+13$
- $y^2=39 x^6+52 x^5+29 x^4+5 x^3+4 x^2+52 x+10$
- $y^2=37 x^6+57 x^5+35 x^4+42 x^3+35 x^2+40 x+46$
- $y^2=36 x^6+45 x^5+6 x^4+53 x^3+55 x^2+41 x+33$
- $y^2=11 x^6+44 x^5+16 x^4+25 x^3+50 x^2+20 x+23$
- $y^2=31 x^6+18 x^5+30 x^4+57 x^3+35 x^2+43 x+19$
- $y^2=21 x^6+10 x^5+7 x^4+52 x^3+49 x^2+47 x+50$
- $y^2=56 x^6+16 x^5+55 x^4+17 x^3+31 x^2+29 x+6$
- $y^2=26 x^6+55 x^5+37 x^4+46 x^3+34 x^2+3 x+42$
- $y^2=51 x^6+6 x^5+45 x^4+36 x^3+27 x^2+10 x+20$
- $y^2=26 x^6+17 x^5+2 x^4+28 x^3+35 x^2+29 x+14$
- $y^2=36 x^6+23 x^5+45 x^4+53 x^3+48 x^2+12 x+38$
- $y^2=53 x^6+4 x^5+55 x^4+24 x^3+11 x^2+16 x+56$
- $y^2=3 x^6+4 x^5+41 x^4+55 x^3+2 x^2+10 x+24$
- $y^2=13 x^6+17 x^5+7 x^4+57 x^3+9 x^2+44 x+23$
- $y^2=6 x^6+24 x^5+19 x^4+23 x^3+37 x^2+33 x+38$
- $y^2=47 x^6+31 x^5+17 x^4+42 x^3+13 x^2+32 x+12$
- and 220 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is 4.0.25550136.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.c_ck | $2$ | (not in LMFDB) |