Properties

Label 2.59.abb_lo
Base field $\F_{59}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{59}$
Dimension:  $2$
L-polynomial:  $( 1 - 14 x + 59 x^{2} )( 1 - 13 x + 59 x^{2} )$
  $1 - 27 x + 300 x^{2} - 1593 x^{3} + 3481 x^{4}$
Frobenius angles:  $\pm0.135062563049$, $\pm0.178868127011$
Angle rank:  $2$ (numerical)
Jacobians:  $0$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2162$ $11679124$ $42147645176$ $146893948527520$ $511172908444673102$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $33$ $3353$ $205218$ $12122601$ $715002843$ $42181273586$ $2488656810057$ $146830466284561$ $8662995900772902$ $511116752821112153$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{59}$.

Endomorphism algebra over $\F_{59}$
The isogeny class factors as 1.59.ao $\times$ 1.59.an and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.59.ab_acm$2$(not in LMFDB)
2.59.b_acm$2$(not in LMFDB)
2.59.bb_lo$2$(not in LMFDB)