Invariants
| Base field: | $\F_{59}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 + 92 x^{2} + 3481 x^{4}$ | 
| Frobenius angles: | $\pm0.392304302513$, $\pm0.607695697487$ | 
| Angle rank: | $1$ (numerical) | 
| Number field: | \(\Q(\sqrt{26}, \sqrt{-210})\) | 
| Galois group: | $C_2^2$ | 
| Jacobians: | $56$ | 
| Isomorphism classes: | 128 | 
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3574$ | $12773476$ | $42180351574$ | $146794063539600$ | $511116751912378054$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $3666$ | $205380$ | $12114358$ | $714924300$ | $42180169506$ | $2488651484820$ | $146830481561758$ | $8662995818654940$ | $511116750524114706$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=3 x^6+32 x^5+28 x^4+41 x^3+30 x^2+28 x+50$
- $y^2=6 x^6+5 x^5+56 x^4+23 x^3+x^2+56 x+41$
- $y^2=18 x^6+21 x^5+4 x^4+32 x^3+50 x^2+48 x+56$
- $y^2=36 x^6+42 x^5+8 x^4+5 x^3+41 x^2+37 x+53$
- $y^2=35 x^6+21 x^5+26 x^4+52 x^3+51 x^2+19 x+50$
- $y^2=11 x^6+42 x^5+52 x^4+45 x^3+43 x^2+38 x+41$
- $y^2=37 x^6+14 x^5+11 x^4+27 x^3+2 x^2+23 x+43$
- $y^2=15 x^6+28 x^5+22 x^4+54 x^3+4 x^2+46 x+27$
- $y^2=58 x^6+11 x^5+31 x^4+8 x^3+35 x^2+3 x+32$
- $y^2=57 x^6+22 x^5+3 x^4+16 x^3+11 x^2+6 x+5$
- $y^2=3 x^6+12 x^5+45 x^4+22 x^3+20 x^2+33 x+30$
- $y^2=6 x^6+24 x^5+31 x^4+44 x^3+40 x^2+7 x+1$
- $y^2=28 x^6+23 x^4+27 x^3+36 x^2+24 x+23$
- $y^2=56 x^6+46 x^4+54 x^3+13 x^2+48 x+46$
- $y^2=39 x^6+19 x^5+56 x^4+35 x^3+48 x^2+51 x+44$
- $y^2=19 x^6+38 x^5+53 x^4+11 x^3+37 x^2+43 x+29$
- $y^2=56 x^6+29 x^5+15 x^3+18 x^2+32 x+5$
- $y^2=53 x^6+58 x^5+30 x^3+36 x^2+5 x+10$
- $y^2=22 x^6+52 x^5+14 x^4+34 x^3+33 x^2+40 x+47$
- $y^2=44 x^6+45 x^5+28 x^4+9 x^3+7 x^2+21 x+35$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{26}, \sqrt{-210})\). | 
| The base change of $A$ to $\F_{59^{2}}$ is 1.3481.do 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1365}) \)$)$ | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.59.a_ado | $4$ | (not in LMFDB) | 
