Invariants
| Base field: | $\F_{59}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 52 x^{2} + 3481 x^{4}$ |
| Frobenius angles: | $\pm0.177369038774$, $\pm0.822630961226$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{-66}, \sqrt{170})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $168$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $3430$ | $11764900$ | $42180936070$ | $146933671424400$ | $511116752217205750$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $3378$ | $205380$ | $12125878$ | $714924300$ | $42181338498$ | $2488651484820$ | $146830449812638$ | $8662995818654940$ | $511116751133770098$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 168 curves (of which all are hyperelliptic):
- $y^2=8 x^6+52 x^5+20 x^4+x^3+46 x^2+46 x+7$
- $y^2=16 x^6+45 x^5+40 x^4+2 x^3+33 x^2+33 x+14$
- $y^2=29 x^6+32 x^5+28 x^4+23 x^3+23 x^2+49 x+27$
- $y^2=58 x^6+5 x^5+56 x^4+46 x^3+46 x^2+39 x+54$
- $y^2=53 x^6+24 x^5+42 x^4+23 x^3+16 x^2+38 x+6$
- $y^2=47 x^6+48 x^5+25 x^4+46 x^3+32 x^2+17 x+12$
- $y^2=43 x^6+15 x^5+11 x^4+19 x^3+57 x^2+12 x+24$
- $y^2=27 x^6+30 x^5+22 x^4+38 x^3+55 x^2+24 x+48$
- $y^2=19 x^6+15 x^5+27 x^4+55 x^3+16 x^2+30 x+35$
- $y^2=38 x^6+30 x^5+54 x^4+51 x^3+32 x^2+x+11$
- $y^2=39 x^6+19 x^5+54 x^4+47 x^3+12 x^2+51 x+40$
- $y^2=19 x^6+38 x^5+49 x^4+35 x^3+24 x^2+43 x+21$
- $y^2=12 x^6+52 x^5+40 x^4+43 x^3+40 x^2+14 x+11$
- $y^2=24 x^6+45 x^5+21 x^4+27 x^3+21 x^2+28 x+22$
- $y^2=48 x^6+31 x^5+7 x^4+53 x^3+15 x^2+52 x+14$
- $y^2=37 x^6+3 x^5+14 x^4+47 x^3+30 x^2+45 x+28$
- $y^2=22 x^6+58 x^5+17 x^4+43 x^3+44 x^2+49 x+44$
- $y^2=44 x^6+57 x^5+34 x^4+27 x^3+29 x^2+39 x+29$
- $y^2=37 x^6+36 x^5+44 x^4+25 x^3+45 x^2+25 x+8$
- $y^2=15 x^6+13 x^5+29 x^4+50 x^3+31 x^2+50 x+16$
- and 148 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{59^{2}}$.
Endomorphism algebra over $\F_{59}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-66}, \sqrt{170})\). |
| The base change of $A$ to $\F_{59^{2}}$ is 1.3481.aca 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2805}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.59.a_ca | $4$ | (not in LMFDB) |