Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 8 x + 70 x^{2} + 424 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.429218232223$, $\pm0.779734689780$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.183872.1 |
Galois group: | $D_{4}$ |
Jacobians: | $312$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3312$ | $8107776$ | $22179963888$ | $62273038381056$ | $174855893848090992$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $62$ | $2886$ | $148982$ | $7892174$ | $418119982$ | $22164589206$ | $1174713591526$ | $62259682096798$ | $3299763602109470$ | $174887469184892646$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 312 curves (of which all are hyperelliptic):
- $y^2=36 x^6+25 x^5+16 x^4+20 x^3+42 x^2+12 x+44$
- $y^2=29 x^6+41 x^5+36 x^4+9 x^3+47 x^2+34 x+17$
- $y^2=21 x^6+17 x^5+28 x^4+28 x^3+36 x^2+29 x+4$
- $y^2=25 x^6+13 x^5+51 x^4+48 x^3+48 x^2+14 x+38$
- $y^2=52 x^6+7 x^5+19 x^4+13 x^3+39 x^2+42 x+34$
- $y^2=18 x^6+20 x^5+4 x^4+21 x^3+5 x^2+24 x$
- $y^2=43 x^6+18 x^5+47 x^4+49 x^3+37 x^2+7 x+17$
- $y^2=12 x^6+8 x^5+7 x^4+43 x^3+25 x^2+30 x+15$
- $y^2=27 x^6+44 x^5+36 x^4+2 x^2+13 x+47$
- $y^2=29 x^6+18 x^5+9 x^4+12 x^3+52 x^2+14 x+29$
- $y^2=10 x^6+30 x^5+16 x^4+51 x^3+45 x^2+28 x+41$
- $y^2=4 x^6+44 x^5+3 x^4+38 x^3+32 x^2+27 x+49$
- $y^2=36 x^6+50 x^4+8 x^3+2 x^2+50 x+32$
- $y^2=29 x^6+8 x^5+38 x^4+35 x^3+33 x^2+44 x+13$
- $y^2=46 x^6+38 x^5+25 x^4+11 x^3+25 x^2+46 x+5$
- $y^2=8 x^6+41 x^5+49 x^4+15 x^3+35 x^2+23 x+26$
- $y^2=10 x^6+7 x^5+11 x^4+17 x^3+44 x^2+28 x+38$
- $y^2=32 x^6+8 x^5+28 x^4+18 x^3+16 x^2+22 x+47$
- $y^2=8 x^6+x^5+24 x^4+48 x^3+11 x^2+34 x+31$
- $y^2=18 x^6+7 x^5+46 x^4+7 x^3+45 x^2+31 x+47$
- and 292 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is 4.0.183872.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.ai_cs | $2$ | (not in LMFDB) |