Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 5 x + 74 x^{2} + 265 x^{3} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.418561879982$, $\pm0.703428468199$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.7831900.1 |
Galois group: | $D_{4}$ |
Jacobians: | $72$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3154$ | $8244556$ | $22135983136$ | $62273571856576$ | $174870168449582314$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $59$ | $2933$ | $148688$ | $7892241$ | $418154119$ | $22164142682$ | $1174715361403$ | $62259691492033$ | $3299763448114064$ | $174887470498889453$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 72 curves (of which all are hyperelliptic):
- $y^2=3 x^5+7 x^4+27 x^3+47 x^2+3 x+5$
- $y^2=22 x^6+25 x^5+21 x^4+21 x^3+17 x^2+44 x+15$
- $y^2=24 x^6+38 x^5+43 x^4+x^3+8 x^2+25 x+46$
- $y^2=34 x^6+40 x^5+33 x^4+37 x^3+12 x^2+6 x+18$
- $y^2=45 x^6+49 x^5+30 x^4+24 x^3+30 x^2+11 x+29$
- $y^2=40 x^6+47 x^5+13 x^4+46 x^3+42 x^2+31 x+46$
- $y^2=33 x^6+5 x^5+10 x^4+11 x^3+9 x^2+34 x+4$
- $y^2=23 x^6+27 x^5+12 x^4+25 x^3+37 x^2+15 x+22$
- $y^2=7 x^6+9 x^5+18 x^4+35 x^3+35 x^2+37 x+26$
- $y^2=3 x^6+49 x^5+15 x^4+33 x^3+37 x^2+50 x+25$
- $y^2=10 x^6+27 x^5+17 x^4+37 x^3+42 x^2+15 x+17$
- $y^2=14 x^6+7 x^5+20 x^4+25 x^3+16 x^2+26 x+51$
- $y^2=12 x^6+29 x^5+12 x^4+39 x^3+40 x^2+51 x+33$
- $y^2=29 x^6+38 x^5+38 x^4+31 x^3+7 x^2+15$
- $y^2=13 x^6+36 x^5+25 x^4+12 x^3+40 x^2+10 x+42$
- $y^2=33 x^6+29 x^5+41 x^4+44 x^3+16 x^2+33 x+40$
- $y^2=42 x^6+31 x^5+38 x^4+8 x^3+10 x^2+15 x+45$
- $y^2=52 x^6+16 x^5+36 x^4+5 x^3+37 x^2+18 x+16$
- $y^2=26 x^6+41 x^5+26 x^4+x^3+40 x^2+19 x+25$
- $y^2=39 x^6+x^5+52 x^4+39 x^3+5 x^2+49 x+19$
- and 52 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is 4.0.7831900.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.af_cw | $2$ | (not in LMFDB) |