Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 13 x + 53 x^{2} )^{2}$ |
$1 + 26 x + 275 x^{2} + 1378 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.851293248891$, $\pm0.851293248891$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4489$ | $7546009$ | $22203384064$ | $62285731721161$ | $174863779556805889$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $80$ | $2684$ | $149138$ | $7893780$ | $418138840$ | $22164922838$ | $1174706840296$ | $62259716534884$ | $3299763480072074$ | $174887470433457164$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):
- $y^2=42 x^6+5 x^5+2 x^4+49 x^3+41 x^2+21 x+44$
- $y^2=31 x^6+43 x^5+8 x^4+47 x^3+38 x^2+34 x+37$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.n 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-43}) \)$)$ |
Base change
This is a primitive isogeny class.