Properties

Label 2.53.ba_kp
Base field $\F_{53}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{53}$
Dimension:  $2$
L-polynomial:  $( 1 + 13 x + 53 x^{2} )^{2}$
  $1 + 26 x + 275 x^{2} + 1378 x^{3} + 2809 x^{4}$
Frobenius angles:  $\pm0.851293248891$, $\pm0.851293248891$
Angle rank:  $1$ (numerical)
Jacobians:  $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4489$ $7546009$ $22203384064$ $62285731721161$ $174863779556805889$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $80$ $2684$ $149138$ $7893780$ $418138840$ $22164922838$ $1174706840296$ $62259716534884$ $3299763480072074$ $174887470433457164$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 2 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{53}$.

Endomorphism algebra over $\F_{53}$
The isogeny class factors as 1.53.n 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-43}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.aba_kp$2$(not in LMFDB)
2.53.a_acl$2$(not in LMFDB)
2.53.an_em$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.53.aba_kp$2$(not in LMFDB)
2.53.a_acl$2$(not in LMFDB)
2.53.an_em$3$(not in LMFDB)
2.53.a_cl$4$(not in LMFDB)
2.53.n_em$6$(not in LMFDB)