Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 11 x + 105 x^{2} - 583 x^{3} + 2809 x^{4}$ |
| Frobenius angles: | $\pm0.224376811916$, $\pm0.501971272991$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.471725.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $78$ |
| Isomorphism classes: | 78 |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2321$ | $8144389$ | $22221971189$ | $62257411693301$ | $174903866186089216$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $43$ | $2899$ | $149263$ | $7890195$ | $418234698$ | $22164796963$ | $1174710568795$ | $62259662029539$ | $3299763483528199$ | $174887470597418214$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 78 curves (of which all are hyperelliptic):
- $y^2=20 x^6+45 x^5+3 x^4+33 x^3+3 x^2+30 x+52$
- $y^2=9 x^6+15 x^5+x^4+26 x^3+41 x^2+32 x+27$
- $y^2=2 x^6+13 x^5+52 x^4+41 x^3+10 x^2+42 x+13$
- $y^2=14 x^6+28 x^5+36 x^4+51 x^3+31 x^2+13 x+23$
- $y^2=31 x^6+52 x^5+37 x^4+27 x^3+42 x^2+21 x+16$
- $y^2=7 x^6+12 x^5+5 x^4+27 x^3+16 x^2+21 x+42$
- $y^2=49 x^6+21 x^5+25 x^4+46 x^3+34 x^2+2 x+3$
- $y^2=16 x^6+52 x^5+42 x^4+33 x^3+50 x^2+21 x+10$
- $y^2=2 x^6+15 x^5+4 x^4+37 x^3+30 x^2+6 x+40$
- $y^2=37 x^5+42 x^4+2 x^3+2 x^2+44 x+30$
- $y^2=7 x^6+42 x^5+49 x^4+36 x^3+26 x^2+8 x+36$
- $y^2=23 x^6+29 x^5+40 x^4+12 x^3+10 x^2+34 x+9$
- $y^2=23 x^6+21 x^5+36 x^4+43 x^3+40 x^2+24 x+48$
- $y^2=6 x^6+29 x^5+3 x^4+33 x^3+50 x^2+45 x+46$
- $y^2=7 x^6+17 x^5+10 x^4+28 x^3+14 x^2+21 x+48$
- $y^2=33 x^6+28 x^5+42 x^4+22 x^3+46 x^2+16 x+30$
- $y^2=45 x^6+12 x^5+26 x^4+47 x^3+2 x^2+40 x+8$
- $y^2=26 x^6+21 x^5+33 x^4+45 x^3+6 x^2+50 x+32$
- $y^2=39 x^6+5 x^5+28 x^4+39 x^3+27 x^2+32 x+46$
- $y^2=16 x^6+16 x^5+13 x^4+6 x^3+35 x^2+39 x+21$
- and 58 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is 4.0.471725.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.l_eb | $2$ | (not in LMFDB) |