Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 12 x + 53 x^{2} )( 1 + 5 x + 53 x^{2} )$ |
$1 - 7 x + 46 x^{2} - 371 x^{3} + 2809 x^{4}$ | |
Frobenius angles: | $\pm0.191645762723$, $\pm0.611579124397$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $68$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2478$ | $8013852$ | $22091588064$ | $62285196403584$ | $174921251737584198$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $47$ | $2853$ | $148388$ | $7893713$ | $418276267$ | $22164475338$ | $1174710798847$ | $62259703661761$ | $3299763515720324$ | $174887468776104093$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 68 curves (of which all are hyperelliptic):
- $y^2=27 x^6+52 x^5+x^4+43 x^3+34 x^2+37 x+27$
- $y^2=37 x^6+48 x^5+25 x^4+10 x^3+34 x^2+16 x+39$
- $y^2=16 x^6+52 x^5+27 x^4+42 x^3+8 x^2+7 x+22$
- $y^2=24 x^6+4 x^5+17 x^4+3 x^3+x^2+22 x+28$
- $y^2=42 x^6+18 x^5+16 x^4+11 x^3+19 x^2+8 x+34$
- $y^2=4 x^6+14 x^5+38 x^4+27 x^3+48 x^2+39 x+25$
- $y^2=46 x^6+47 x^5+38 x^4+8 x^3+3 x^2+47 x+44$
- $y^2=43 x^6+51 x^5+36 x^4+29 x^3+48 x^2+44 x+36$
- $y^2=42 x^6+34 x^5+4 x^4+31 x^3+15 x^2+14 x+9$
- $y^2=13 x^6+45 x^4+8 x^3+2 x^2+41 x+27$
- $y^2=50 x^6+32 x^5+45 x^4+16 x^3+21 x^2+27 x+18$
- $y^2=27 x^6+34 x^5+48 x^4+50 x^3+34 x^2+13 x+11$
- $y^2=2 x^6+41 x^5+15 x^4+34 x^3+12 x^2+17 x+18$
- $y^2=26 x^6+23 x^5+5 x^4+30 x^3+41 x^2+42 x+16$
- $y^2=x^6+22 x^5+10 x^4+24 x^3+47 x^2+15 x+39$
- $y^2=14 x^6+49 x^5+33 x^4+8 x^2+20 x+15$
- $y^2=13 x^6+32 x^5+16 x^4+37 x^3+21 x^2+5 x+32$
- $y^2=49 x^6+3 x^5+16 x^4+10 x^3+27 x^2+47 x+20$
- $y^2=32 x^6+50 x^5+3 x^4+17 x^3+x^2+14 x+22$
- $y^2=4 x^6+25 x^5+12 x^4+23 x^3+15 x^2+52$
- and 48 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$The isogeny class factors as 1.53.am $\times$ 1.53.f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.ar_gk | $2$ | (not in LMFDB) |
2.53.h_bu | $2$ | (not in LMFDB) |
2.53.r_gk | $2$ | (not in LMFDB) |