Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 4 x + 14 x^{2} - 212 x^{3} + 2809 x^{4}$ |
| Frobenius angles: | $\pm0.199311132617$, $\pm0.679901698365$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.396288.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $234$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2608$ | $7928320$ | $22085276848$ | $62323572121600$ | $174909885326944048$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $50$ | $2822$ | $148346$ | $7898574$ | $418249090$ | $22164315734$ | $1174713417802$ | $62259688790686$ | $3299763393252818$ | $174887470204450982$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 234 curves (of which all are hyperelliptic):
- $y^2=46 x^6+9 x^5+5 x^4+12 x^3+32 x^2+40 x+52$
- $y^2=6 x^5+42 x^4+48 x^3+x^2+30 x+14$
- $y^2=35 x^6+x^5+20 x^4+27 x^3+2 x^2+27 x+29$
- $y^2=36 x^6+22 x^5+11 x^4+31 x^3+2 x^2+17 x+18$
- $y^2=21 x^6+37 x^5+2 x^4+36 x^3+22 x^2+35 x+23$
- $y^2=47 x^6+28 x^5+20 x^4+51 x^3+8 x^2+16 x+49$
- $y^2=28 x^6+11 x^5+26 x^4+19 x^3+44 x^2+52$
- $y^2=6 x^6+6 x^5+45 x^4+51 x^3+7 x^2+10 x+28$
- $y^2=28 x^6+13 x^5+51 x^4+37 x^3+15 x^2+30 x+17$
- $y^2=25 x^6+27 x^5+3 x^4+37 x^3+18 x^2+6 x+29$
- $y^2=16 x^6+7 x^5+5 x^4+52 x^3+12 x^2+11 x+2$
- $y^2=21 x^6+11 x^5+22 x^4+2 x^3+2 x^2+18 x+50$
- $y^2=14 x^6+46 x^5+52 x^4+33 x^3+30 x^2+50 x+31$
- $y^2=45 x^6+48 x^5+44 x^4+3 x^3+11 x^2+18 x+44$
- $y^2=17 x^6+51 x^5+48 x^4+12 x^3+26 x^2+25 x+14$
- $y^2=23 x^6+42 x^5+47 x^4+44 x^3+15 x^2+17 x+49$
- $y^2=10 x^6+14 x^5+29 x^4+43 x^3+52 x^2+4 x+45$
- $y^2=32 x^6+44 x^5+4 x^4+39 x^3+34 x^2+33 x+14$
- $y^2=36 x^6+15 x^5+33 x^4+8 x^3+17 x^2+16 x$
- $y^2=5 x^6+34 x^5+2 x^4+2 x^3+50 x^2+46 x+27$
- and 214 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is 4.0.396288.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.e_o | $2$ | (not in LMFDB) |