Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 94 x^{2} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.423535874200$, $\pm0.576464125800$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-2}, \sqrt{3})\) |
Galois group: | $C_2^2$ |
Jacobians: | $160$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2904$ | $8433216$ | $22164399576$ | $62208933405696$ | $174887469747527064$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2998$ | $148878$ | $7884046$ | $418195494$ | $22164438022$ | $1174711139838$ | $62259701262238$ | $3299763591802134$ | $174887469129541078$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 160 curves (of which all are hyperelliptic):
- $y^2=50 x^6+41 x^5+3 x^4+28 x^3+20 x^2+21 x+30$
- $y^2=47 x^6+29 x^5+6 x^4+3 x^3+40 x^2+42 x+7$
- $y^2=20 x^6+13 x^5+31 x^4+51 x^3+29 x+30$
- $y^2=40 x^6+26 x^5+9 x^4+49 x^3+5 x+7$
- $y^2=40 x^6+2 x^5+6 x^4+49 x^3+19 x^2+14 x+4$
- $y^2=27 x^6+4 x^5+12 x^4+45 x^3+38 x^2+28 x+8$
- $y^2=39 x^6+10 x^5+48 x^4+6 x^3+25 x^2+38 x+1$
- $y^2=21 x^6+45 x^5+25 x^4+21 x^3+38 x^2+28 x+21$
- $y^2=42 x^6+37 x^5+50 x^4+42 x^3+23 x^2+3 x+42$
- $y^2=x^6+x^3+3$
- $y^2=14 x^6+49 x^5+45 x^4+12 x^3+6 x^2+34 x+16$
- $y^2=28 x^6+45 x^5+37 x^4+24 x^3+12 x^2+15 x+32$
- $y^2=50 x^6+39 x^5+52 x^4+41 x^3+48 x^2+10 x+1$
- $y^2=25 x^6+47 x^5+33 x^4+22 x^3+18 x^2+10 x+45$
- $y^2=27 x^6+5 x^5+15 x^4+3 x^3+18 x^2+5 x+37$
- $y^2=34 x^6+14 x^5+8 x^4+16 x^3+14 x^2+47 x+47$
- $y^2=15 x^6+28 x^5+16 x^4+32 x^3+28 x^2+41 x+41$
- $y^2=17 x^6+27 x^5+2 x^4+4 x^3+23 x^2+x+9$
- $y^2=46 x^6+19 x^5+40 x^4+51 x^3+30 x^2+23 x+51$
- $y^2=39 x^6+38 x^5+27 x^4+49 x^3+7 x^2+46 x+49$
- and 140 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-2}, \sqrt{3})\). |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.dq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-6}) \)$)$ |
Base change
This is a primitive isogeny class.