Invariants
| Base field: | $\F_{53}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 60 x^{2} + 2809 x^{4}$ |
| Frobenius angles: | $\pm0.345762179472$, $\pm0.654237820528$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{46}, \sqrt{-166})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $126$ |
| Cyclic group of points: | yes |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2870$ | $8236900$ | $22164071510$ | $62291556250000$ | $174887470476537350$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $54$ | $2930$ | $148878$ | $7894518$ | $418195494$ | $22163781890$ | $1174711139838$ | $62259713828638$ | $3299763591802134$ | $174887470587561650$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 126 curves (of which all are hyperelliptic):
- $y^2=15 x^6+34 x^5+51 x^4+20 x^3+37 x^2+45 x+29$
- $y^2=30 x^6+15 x^5+49 x^4+40 x^3+21 x^2+37 x+5$
- $y^2=46 x^6+23 x^5+25 x^4+31 x^3+50 x^2+11 x+12$
- $y^2=39 x^6+46 x^5+50 x^4+9 x^3+47 x^2+22 x+24$
- $y^2=43 x^6+36 x^5+3 x^4+23 x^3+5 x^2+36 x+34$
- $y^2=33 x^6+19 x^5+6 x^4+46 x^3+10 x^2+19 x+15$
- $y^2=34 x^6+3 x^5+27 x^4+21 x^3+30 x^2+18 x+3$
- $y^2=15 x^6+6 x^5+x^4+42 x^3+7 x^2+36 x+6$
- $y^2=35 x^6+28 x^5+48 x^4+20 x^3+9 x^2+9 x+39$
- $y^2=17 x^6+3 x^5+43 x^4+40 x^3+18 x^2+18 x+25$
- $y^2=8 x^6+7 x^5+7 x^4+7 x^3+26 x^2+23 x+18$
- $y^2=16 x^6+14 x^5+14 x^4+14 x^3+52 x^2+46 x+36$
- $y^2=36 x^6+23 x^5+2 x^4+24 x^3+21 x^2+7 x+11$
- $y^2=19 x^6+46 x^5+4 x^4+48 x^3+42 x^2+14 x+22$
- $y^2=7 x^6+23 x^5+40 x^4+14 x^3+8 x^2+30 x+14$
- $y^2=14 x^6+46 x^5+27 x^4+28 x^3+16 x^2+7 x+28$
- $y^2=10 x^6+40 x^5+46 x^4+21 x^3+46 x^2+26 x+13$
- $y^2=20 x^6+27 x^5+39 x^4+42 x^3+39 x^2+52 x+26$
- $y^2=35 x^6+14 x^5+19 x^4+23 x^2+12 x+24$
- $y^2=17 x^6+28 x^5+38 x^4+46 x^2+24 x+48$
- and 106 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{46}, \sqrt{-166})\). |
| The base change of $A$ to $\F_{53^{2}}$ is 1.2809.ci 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1909}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.53.a_aci | $4$ | (not in LMFDB) |