Invariants
Base field: | $\F_{53}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 40 x^{2} + 2809 x^{4}$ |
Frobenius angles: | $\pm0.311583769899$, $\pm0.688416230101$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{66}, \sqrt{-146})\) |
Galois group: | $C_2^2$ |
Jacobians: | $300$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2850$ | $8122500$ | $22164088050$ | $62323130250000$ | $174887471147129250$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $54$ | $2890$ | $148878$ | $7898518$ | $418195494$ | $22163814970$ | $1174711139838$ | $62259689684638$ | $3299763591802134$ | $174887471928745450$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 300 curves (of which all are hyperelliptic):
- $y^2=40 x^6+44 x^5+13 x^4+x^2+45 x+41$
- $y^2=27 x^6+35 x^5+26 x^4+2 x^2+37 x+29$
- $y^2=43 x^6+29 x^5+16 x^4+44 x^3+36 x^2+37 x+35$
- $y^2=33 x^6+5 x^5+32 x^4+35 x^3+19 x^2+21 x+17$
- $y^2=52 x^6+6 x^5+40 x^4+25 x^3+29 x^2+43 x+21$
- $y^2=51 x^6+12 x^5+27 x^4+50 x^3+5 x^2+33 x+42$
- $y^2=7 x^6+45 x^5+49 x^4+28 x^3+14 x^2+39 x+45$
- $y^2=14 x^6+37 x^5+45 x^4+3 x^3+28 x^2+25 x+37$
- $y^2=13 x^6+13 x^5+20 x^3+4 x^2+21 x+50$
- $y^2=26 x^6+26 x^5+40 x^3+8 x^2+42 x+47$
- $y^2=46 x^6+48 x^5+10 x^4+15 x^3+14 x^2+2 x+23$
- $y^2=39 x^6+43 x^5+20 x^4+30 x^3+28 x^2+4 x+46$
- $y^2=15 x^6+22 x^5+45 x^4+33 x^3+48 x^2+40 x+18$
- $y^2=30 x^6+44 x^5+37 x^4+13 x^3+43 x^2+27 x+36$
- $y^2=23 x^6+3 x^5+23 x^4+42 x^3+7 x^2+28 x+16$
- $y^2=46 x^6+6 x^5+46 x^4+31 x^3+14 x^2+3 x+32$
- $y^2=44 x^6+47 x^5+44 x^4+31 x^3+21 x^2+24 x+25$
- $y^2=35 x^6+41 x^5+35 x^4+9 x^3+42 x^2+48 x+50$
- $y^2=20 x^6+50 x^5+2 x^4+45 x^3+45 x^2+48 x+42$
- $y^2=40 x^6+47 x^5+4 x^4+37 x^3+37 x^2+43 x+31$
- and 280 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{53^{2}}$.
Endomorphism algebra over $\F_{53}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{66}, \sqrt{-146})\). |
The base change of $A$ to $\F_{53^{2}}$ is 1.2809.bo 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-2409}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.53.a_abo | $4$ | (not in LMFDB) |