Invariants
| Base field: | $\F_{5}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + x + 5 x^{3} + 25 x^{4}$ |
| Frobenius angles: | $\pm0.293537673823$, $\pm0.810347921095$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.8405.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $4$ |
This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
| $p$-rank: | $1$ |
| Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $32$ | $640$ | $17792$ | $442880$ | $9461152$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $7$ | $25$ | $142$ | $705$ | $3027$ | $15670$ | $77287$ | $389985$ | $1956022$ | $9765825$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=x^5+2 x^2+3$
- $y^2=2 x^5+3 x^2+4$
- $y^2=3 x^6+4 x^5+x^3+3 x+4$
- $y^2=x^6+x^4+2 x^3+3 x+3$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{5}$.
Endomorphism algebra over $\F_{5}$| The endomorphism algebra of this simple isogeny class is 4.0.8405.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.5.ab_a | $2$ | 2.25.ab_bo |