Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 6 x + 47 x^{2} )( 1 + 9 x + 47 x^{2} )$ |
$1 + 15 x + 148 x^{2} + 705 x^{3} + 2209 x^{4}$ | |
Frobenius angles: | $\pm0.644169619151$, $\pm0.727918434973$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $18$ |
Isomorphism classes: | 90 |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $3078$ | $5041764$ | $10658289096$ | $23837177853216$ | $52601523316747218$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $63$ | $2281$ | $102654$ | $4884985$ | $229355433$ | $10778942122$ | $506624521599$ | $23811287015569$ | $1119130430010498$ | $52599132445566961$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=37 x^6+46 x^5+3 x^4+4 x^3+14 x^2+22 x+3$
- $y^2=17 x^6+22 x^5+16 x^4+12 x^3+26 x^2+30 x+31$
- $y^2=28 x^6+12 x^5+40 x^4+27 x^3+9 x^2+5 x+14$
- $y^2=27 x^6+45 x^5+27 x^4+24 x^3+41 x^2+15 x+25$
- $y^2=31 x^6+11 x^5+31 x^4+6 x^3+24 x^2+24 x+35$
- $y^2=x^6+46 x^5+23 x^4+42 x^3+39 x^2+36 x+9$
- $y^2=26 x^6+29 x^5+43 x^4+12 x^3+42 x^2+40 x+36$
- $y^2=12 x^6+41 x^5+30 x^4+19 x^3+7 x^2+3 x+30$
- $y^2=35 x^6+39 x^5+36 x^4+4 x^3+15 x^2+30 x+42$
- $y^2=29 x^6+25 x^5+26 x^4+12 x^3+45 x^2+10 x+31$
- $y^2=32 x^6+18 x^5+30 x^4+24 x^3+15 x^2+38 x+39$
- $y^2=16 x^6+20 x^5+36 x^4+30 x^3+18 x^2+12 x+46$
- $y^2=43 x^6+14 x^5+21 x^4+5 x^3+26 x^2+18 x+42$
- $y^2=4 x^6+36 x^4+43 x^3+38 x^2+7 x+25$
- $y^2=17 x^5+15 x^4+16 x^3+28 x^2+42 x+22$
- $y^2=8 x^6+4 x^5+11 x^4+21 x^3+39 x^2+20 x+27$
- $y^2=9 x^6+3 x^5+44 x^4+33 x^3+17 x^2+34 x+9$
- $y^2=8 x^6+5 x^5+40 x^4+46 x^3+31 x^2+x+12$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$The isogeny class factors as 1.47.g $\times$ 1.47.j and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.ap_fs | $2$ | (not in LMFDB) |
2.47.ad_bo | $2$ | (not in LMFDB) |
2.47.d_bo | $2$ | (not in LMFDB) |