Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 7 x + 102 x^{2} + 329 x^{3} + 2209 x^{4}$ |
| Frobenius angles: | $\pm0.533455305518$, $\pm0.632943641186$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.2109989.3 |
| Galois group: | $D_{4}$ |
| Jacobians: | $48$ |
| Isomorphism classes: | 48 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2648$ | $5232448$ | $10695240224$ | $23793761947904$ | $52608654811172968$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $55$ | $2365$ | $103012$ | $4876089$ | $229386525$ | $10779215950$ | $506621857195$ | $23811289719249$ | $1119130488638764$ | $52599132229460325$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 48 curves (of which all are hyperelliptic):
- $y^2=16 x^6+17 x^5+2 x^4+17 x^3+42 x^2+36 x+1$
- $y^2=34 x^6+3 x^5+34 x^4+25 x^3+11 x^2+17 x+35$
- $y^2=46 x^6+13 x^5+44 x^4+27 x^3+11 x^2+5 x+42$
- $y^2=4 x^6+35 x^5+34 x^4+16 x^3+24 x^2+27 x+42$
- $y^2=8 x^6+8 x^5+33 x^4+18 x^3+41 x^2+43 x+34$
- $y^2=45 x^6+29 x^5+15 x^4+44 x^3+26 x^2+41 x+1$
- $y^2=5 x^6+39 x^5+32 x^4+41 x^3+30 x^2+37 x+5$
- $y^2=24 x^6+36 x^5+33 x^4+44 x^3+23 x^2+18 x+13$
- $y^2=12 x^6+24 x^5+19 x^4+41 x^3+44 x^2+x+21$
- $y^2=34 x^6+35 x^5+17 x^4+14 x^3+7 x^2+16 x+14$
- $y^2=7 x^6+31 x^5+21 x^4+39 x^3+34 x^2+46 x+34$
- $y^2=21 x^6+9 x^5+23 x^4+20 x^3+10 x^2+6 x+4$
- $y^2=33 x^6+31 x^5+17 x^4+30 x^3+36 x^2+15 x+3$
- $y^2=32 x^6+33 x^5+39 x^4+18 x^3+17 x^2+3 x+18$
- $y^2=37 x^6+2 x^5+18 x^3+30 x^2+42 x+42$
- $y^2=39 x^6+17 x^5+30 x^4+40 x^3+36 x^2+36 x+35$
- $y^2=14 x^6+31 x^5+29 x^4+15 x^3+38 x^2+38 x+3$
- $y^2=12 x^6+27 x^5+28 x^4+36 x^3+40 x^2+40 x+33$
- $y^2=x^5+6 x^4+10 x^3+25 x^2+12 x+20$
- $y^2=6 x^6+42 x^5+19 x^4+15 x^3+34 x^2+23 x+17$
- and 28 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The endomorphism algebra of this simple isogeny class is 4.0.2109989.3. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.ah_dy | $2$ | (not in LMFDB) |