Properties

Label 2.47.d_ag
Base field $\F_{47}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{47}$
Dimension:  $2$
L-polynomial:  $1 + 3 x - 6 x^{2} + 141 x^{3} + 2209 x^{4}$
Frobenius angles:  $\pm0.283838814022$, $\pm0.821523582883$
Angle rank:  $2$ (numerical)
Number field:  4.0.253096153.1
Galois group:  $D_{4}$
Jacobians:  $40$
Isomorphism classes:  40
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2348$ $4836880$ $10831709072$ $23844367336000$ $52594323800387828$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $51$ $2189$ $104328$ $4886457$ $229324041$ $10779294206$ $506620689423$ $23811282418513$ $1119130506440856$ $52599132278895989$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{47}$.

Endomorphism algebra over $\F_{47}$
The endomorphism algebra of this simple isogeny class is 4.0.253096153.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.47.ad_ag$2$(not in LMFDB)