Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 3 x - 6 x^{2} + 141 x^{3} + 2209 x^{4}$ |
| Frobenius angles: | $\pm0.283838814022$, $\pm0.821523582883$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.253096153.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $40$ |
| Isomorphism classes: | 40 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2348$ | $4836880$ | $10831709072$ | $23844367336000$ | $52594323800387828$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $51$ | $2189$ | $104328$ | $4886457$ | $229324041$ | $10779294206$ | $506620689423$ | $23811282418513$ | $1119130506440856$ | $52599132278895989$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 40 curves (of which all are hyperelliptic):
- $y^2=12 x^6+9 x^5+36 x^4+44 x^3+27 x^2+45 x+7$
- $y^2=22 x^6+35 x^5+38 x^4+12 x^3+24 x^2+41 x+27$
- $y^2=3 x^6+31 x^5+16 x^4+23 x^3+17 x^2+x+14$
- $y^2=32 x^6+2 x^4+4 x^3+16 x^2+8 x+17$
- $y^2=12 x^6+26 x^5+6 x^4+29 x^3+x^2+14 x+16$
- $y^2=37 x^6+18 x^5+18 x^4+44 x^3+16 x^2+15 x+7$
- $y^2=16 x^6+16 x^5+6 x^4+43 x^3+27 x^2+4 x+4$
- $y^2=25 x^6+25 x^5+5 x^4+30 x^3+31 x^2+8 x+15$
- $y^2=43 x^6+14 x^5+13 x^4+31 x^3+21 x^2+4 x+26$
- $y^2=36 x^6+35 x^5+39 x^4+27 x^3+22 x^2+43 x+23$
- $y^2=31 x^6+45 x^5+25 x^4+13 x^3+2 x^2+37 x+16$
- $y^2=32 x^6+28 x^5+12 x^4+23 x^3+25 x^2+33 x+42$
- $y^2=12 x^6+28 x^5+4 x^4+24 x^3+40 x^2+2 x+28$
- $y^2=15 x^6+37 x^5+44 x^4+10 x^3+31 x^2+16 x+11$
- $y^2=25 x^6+6 x^5+11 x^4+37 x^3+25 x^2+36 x+8$
- $y^2=22 x^6+26 x^5+30 x^4+18 x^3+18 x^2+18 x+28$
- $y^2=4 x^6+25 x^5+14 x^4+37 x^3+45 x^2+38 x+42$
- $y^2=15 x^6+30 x^5+20 x^4+2 x^3+6 x^2+31 x+8$
- $y^2=28 x^6+35 x^5+14 x^4+31 x^3+18 x^2+8 x+6$
- $y^2=3 x^6+2 x^5+18 x^4+8 x^3+38 x^2+22 x+17$
- and 20 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The endomorphism algebra of this simple isogeny class is 4.0.253096153.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.ad_ag | $2$ | (not in LMFDB) |