Properties

Label 2.47.az_jq
Base field $\F_{47}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{47}$
Dimension:  $2$
L-polynomial:  $( 1 - 13 x + 47 x^{2} )( 1 - 12 x + 47 x^{2} )$
  $1 - 25 x + 250 x^{2} - 1175 x^{3} + 2209 x^{4}$
Frobenius angles:  $\pm0.102979434792$, $\pm0.160736311100$
Angle rank:  $2$ (numerical)
Jacobians:  $0$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1260$ $4611600$ $10737906480$ $23814763560000$ $52605124367865300$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $23$ $2085$ $103424$ $4880393$ $229371133$ $10779496830$ $506625345739$ $23811301044913$ $1119130549415168$ $52599132540716925$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{47}$.

Endomorphism algebra over $\F_{47}$
The isogeny class factors as 1.47.an $\times$ 1.47.am and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.47.ab_ack$2$(not in LMFDB)
2.47.b_ack$2$(not in LMFDB)
2.47.z_jq$2$(not in LMFDB)