Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 13 x + 47 x^{2} )( 1 - 8 x + 47 x^{2} )$ |
| $1 - 21 x + 198 x^{2} - 987 x^{3} + 2209 x^{4}$ | |
| Frobenius angles: | $\pm0.102979434792$, $\pm0.301698511018$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $12$ |
| Isomorphism classes: | 78 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 5$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1400$ | $4782400$ | $10805362400$ | $23822569120000$ | $52599272364485000$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $27$ | $2165$ | $104076$ | $4881993$ | $229345617$ | $10779118670$ | $506622694311$ | $23811292347313$ | $1119130580128932$ | $52599133150549325$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 12 curves (of which all are hyperelliptic):
- $y^2=41 x^6+36 x^5+25 x^4+11 x^3+38 x^2+37 x+35$
- $y^2=44 x^6+37 x^5+45 x^4+8 x^3+33 x^2+28 x+43$
- $y^2=26 x^6+39 x^5+13 x^4+32 x^3+3 x^2+13 x+14$
- $y^2=20 x^6+7 x^5+3 x^4+16 x^3+29 x^2+22 x+43$
- $y^2=40 x^6+18 x^5+7 x^4+12 x^3+25 x^2+31 x+20$
- $y^2=22 x^6+45 x^5+39 x^4+26 x^3+11 x+21$
- $y^2=13 x^6+34 x^5+36 x^4+43 x^3+20 x^2+28 x+20$
- $y^2=11 x^6+45 x^5+18 x^4+3 x^3+9 x^2+28 x+35$
- $y^2=40 x^6+39 x^5+12 x^4+43 x^3+28 x^2+36 x+37$
- $y^2=23 x^6+43 x^5+12 x^4+39 x^3+25 x^2+31 x+19$
- $y^2=x^6+39 x^5+37 x^4+28 x^3+37 x^2+14 x+21$
- $y^2=9 x^6+20 x^5+7 x^4+45 x^3+16 x^2+19 x+35$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The isogeny class factors as 1.47.an $\times$ 1.47.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.af_ak | $2$ | (not in LMFDB) |
| 2.47.f_ak | $2$ | (not in LMFDB) |
| 2.47.v_hq | $2$ | (not in LMFDB) |