Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 20 x + 182 x^{2} - 940 x^{3} + 2209 x^{4}$ |
| Frobenius angles: | $\pm0.0605356534996$, $\pm0.341840273347$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.35136.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $14$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1432$ | $4800064$ | $10789456984$ | $23804400587776$ | $52590853665327832$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $28$ | $2174$ | $103924$ | $4878270$ | $229308908$ | $10778923838$ | $506622312644$ | $23811292742014$ | $1119130547473468$ | $52599132501193214$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):
- $y^2=31 x^6+21 x^5+36 x^4+45 x^3+30 x^2+46 x+26$
- $y^2=25 x^6+46 x^5+17 x^4+40 x^3+45 x^2+42 x+20$
- $y^2=19 x^5+21 x^4+3 x^3+46 x^2+33 x+19$
- $y^2=34 x^6+43 x^5+3 x^4+34 x^3+43 x^2+27 x+10$
- $y^2=45 x^6+19 x^5+36 x^4+30 x^3+20 x^2+10 x+43$
- $y^2=13 x^6+44 x^5+26 x^4+4 x^3+20 x^2+30 x+12$
- $y^2=19 x^6+6 x^5+12 x^4+8 x^3+32 x^2+5 x+23$
- $y^2=38 x^6+19 x^5+25 x^4+39 x^3+23 x^2+32 x+45$
- $y^2=20 x^6+30 x^5+20 x^4+10 x^3+46 x^2+4 x+38$
- $y^2=4 x^6+11 x^5+6 x^4+25 x^3+6 x^2+37 x+25$
- $y^2=35 x^6+36 x^5+18 x^4+14 x^3+45 x^2+16 x+14$
- $y^2=7 x^6+28 x^5+26 x^4+42 x^3+3 x^2+6 x+38$
- $y^2=13 x^6+12 x^5+9 x^4+27 x^3+26 x^2+11 x+35$
- $y^2=33 x^6+20 x^5+34 x^4+37 x^3+4 x^2+20 x+16$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The endomorphism algebra of this simple isogeny class is 4.0.35136.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.u_ha | $2$ | (not in LMFDB) |