Properties

Label 2.47.au_ha
Base field $\F_{47}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{47}$
Dimension:  $2$
L-polynomial:  $1 - 20 x + 182 x^{2} - 940 x^{3} + 2209 x^{4}$
Frobenius angles:  $\pm0.0605356534996$, $\pm0.341840273347$
Angle rank:  $2$ (numerical)
Number field:  4.0.35136.1
Galois group:  $D_{4}$
Jacobians:  $14$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1432$ $4800064$ $10789456984$ $23804400587776$ $52590853665327832$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $28$ $2174$ $103924$ $4878270$ $229308908$ $10778923838$ $506622312644$ $23811292742014$ $1119130547473468$ $52599132501193214$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 14 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{47}$.

Endomorphism algebra over $\F_{47}$
The endomorphism algebra of this simple isogeny class is 4.0.35136.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.47.u_ha$2$(not in LMFDB)