Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 8 x + 78 x^{2} - 376 x^{3} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.251261681863$, $\pm0.538558323050$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.70208.1 |
Galois group: | $D_{4}$ |
Jacobians: | $162$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1904$ | $5087488$ | $10803404528$ | $23813758029824$ | $52607901374781424$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $40$ | $2302$ | $104056$ | $4880190$ | $229383240$ | $10779365566$ | $506621018776$ | $23811271382910$ | $1119130486837864$ | $52599132415355262$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 162 curves (of which all are hyperelliptic):
- $y^2=11 x^6+2 x^5+18 x^4+43 x^3+18 x^2+23 x+17$
- $y^2=22 x^6+8 x^5+32 x^4+10 x^3+25 x^2+25 x+43$
- $y^2=11 x^6+27 x^5+42 x^4+6 x^3+17 x^2+29 x+23$
- $y^2=24 x^6+12 x^5+4 x^4+41 x^3+9 x^2+12 x+45$
- $y^2=5 x^6+29 x^5+20 x^4+23 x^3+4 x^2+43 x+35$
- $y^2=35 x^6+44 x^5+35 x^4+44 x^3+3 x^2+46 x+12$
- $y^2=38 x^6+27 x^5+8 x^4+21 x^3+34 x^2+20 x+21$
- $y^2=5 x^6+5 x^5+35 x^4+30 x^2+16 x+25$
- $y^2=27 x^6+25 x^5+25 x^4+38 x^3+28 x^2+5 x+23$
- $y^2=35 x^6+2 x^5+37 x^4+44 x^3+11 x^2+33 x+26$
- $y^2=x^6+36 x^5+24 x^3+30 x^2+6 x+7$
- $y^2=11 x^6+35 x^5+18 x^4+40 x^3+7 x^2+31 x+42$
- $y^2=8 x^6+9 x^5+18 x^4+4 x^3+37 x^2+9 x+16$
- $y^2=23 x^6+9 x^5+44 x^4+8 x^3+16 x^2+13 x+8$
- $y^2=31 x^6+3 x^5+11 x^4+13 x^3+20 x^2+30 x+46$
- $y^2=37 x^6+24 x^5+7 x^4+10 x^3+11 x^2+36 x+5$
- $y^2=5 x^6+33 x^5+27 x^4+24 x^3+16 x^2+40$
- $y^2=41 x^6+4 x^5+18 x^4+46 x^3+13 x^2+39 x+36$
- $y^2=20 x^6+25 x^5+37 x^4+2 x^3+31 x^2+40 x+11$
- $y^2=45 x^6+41 x^5+38 x^4+9 x^3+5 x^2+33 x+34$
- and 142 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is 4.0.70208.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.i_da | $2$ | (not in LMFDB) |