Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 8 x + 66 x^{2} - 376 x^{3} + 2209 x^{4}$ |
| Frobenius angles: | $\pm0.217493099483$, $\pm0.561513404362$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.1641728.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $210$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1892$ | $5032720$ | $10773503972$ | $23815636275200$ | $52611534564260452$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $40$ | $2278$ | $103768$ | $4880574$ | $229399080$ | $10779417766$ | $506621630296$ | $23811279740286$ | $1119130472752936$ | $52599131682364518$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 210 curves (of which all are hyperelliptic):
- $y^2=12 x^6+28 x^5+12 x^4+30 x^3+14 x^2+29 x+10$
- $y^2=38 x^6+10 x^5+26 x^4+35 x^3+44 x^2+26 x+5$
- $y^2=43 x^6+37 x^5+7 x^4+9 x^3+40 x^2+16 x+45$
- $y^2=27 x^6+16 x^5+36 x^4+12 x^3+44 x^2+15 x+36$
- $y^2=8 x^6+27 x^5+11 x^4+24 x^3+27 x^2+35 x+20$
- $y^2=45 x^6+9 x^5+32 x^4+11 x^3+37 x^2+2 x+18$
- $y^2=36 x^6+46 x^5+41 x^4+33 x^3+44 x^2+43 x+40$
- $y^2=35 x^6+36 x^5+41 x^4+19 x^3+19 x^2+33 x+28$
- $y^2=17 x^6+12 x^5+15 x^4+38 x^3+4 x^2+29 x+31$
- $y^2=29 x^6+45 x^5+4 x^4+26 x^3+5 x^2+4 x+27$
- $y^2=14 x^6+x^5+9 x^4+11 x^3+24 x^2+10 x+16$
- $y^2=28 x^6+46 x^5+11 x^4+43 x^3+40 x^2+2 x+16$
- $y^2=43 x^5+28 x^4+27 x^3+17 x^2+10 x+14$
- $y^2=24 x^6+x^5+7 x^4+3 x^3+44 x^2+35 x+44$
- $y^2=46 x^6+37 x^5+16 x^4+38 x^3+18 x^2+29 x+11$
- $y^2=22 x^6+46 x^5+18 x^4+17 x^3+45 x^2+2 x+21$
- $y^2=15 x^6+37 x^5+30 x^4+7 x^3+8 x^2+46 x+7$
- $y^2=31 x^6+14 x^5+14 x^4+27 x^3+32 x^2+45 x+11$
- $y^2=44 x^6+16 x^5+6 x^4+23 x^3+32 x^2+42 x+45$
- $y^2=42 x^6+20 x^5+46 x^4+14 x^3+46 x^2+25 x+42$
- and 190 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The endomorphism algebra of this simple isogeny class is 4.0.1641728.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.i_co | $2$ | (not in LMFDB) |