Invariants
Base field: | $\F_{47}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 7 x + 40 x^{2} - 329 x^{3} + 2209 x^{4}$ |
Frobenius angles: | $\pm0.177270673443$, $\pm0.609873430705$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.614047400.1 |
Galois group: | $D_{4}$ |
Jacobians: | $46$ |
Isomorphism classes: | 92 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1914$ | $4949604$ | $10728513576$ | $23820385016736$ | $52612505045733534$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $41$ | $2241$ | $103334$ | $4881545$ | $229403311$ | $10779319242$ | $506623211065$ | $23811298205809$ | $1119130455682778$ | $52599131452394361$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 46 curves (of which all are hyperelliptic):
- $y^2=46 x^6+2 x^5+44 x^4+4 x^3+45 x^2+44 x+43$
- $y^2=12 x^6+31 x^5+17 x^4+46 x^3+33 x^2+5 x+34$
- $y^2=38 x^6+5 x^5+32 x^4+22 x^3+14 x^2+6 x+25$
- $y^2=38 x^6+31 x^5+5 x^4+24 x^3+6 x^2+x+18$
- $y^2=22 x^6+8 x^5+8 x^4+25 x^3+2 x^2+18 x+13$
- $y^2=19 x^6+2 x^5+22 x^4+25 x^3+41 x^2+29 x+38$
- $y^2=20 x^6+18 x^5+20 x^4+20 x^3+25 x^2+44 x+39$
- $y^2=25 x^6+27 x^5+13 x^4+37 x^3+14 x^2+10 x+2$
- $y^2=46 x^6+19 x^5+x^4+37 x^3+8 x^2+11 x+31$
- $y^2=14 x^6+4 x^5+24 x^4+31 x^3+3 x^2+24 x+23$
- $y^2=18 x^5+25 x^4+40 x^3+19 x^2+6 x+18$
- $y^2=11 x^6+46 x^5+4 x^4+x^2+38$
- $y^2=15 x^6+16 x^5+10 x^4+38 x^3+43 x^2+30 x+22$
- $y^2=4 x^6+24 x^5+28 x^4+28 x^3+37 x^2+23 x+6$
- $y^2=14 x^6+28 x^5+x^4+30 x^3+18 x^2+19 x+19$
- $y^2=3 x^6+36 x^5+5 x^4+21 x^3+12 x^2+9 x+28$
- $y^2=27 x^6+5 x^5+27 x^4+2 x^3+43 x^2+2 x+36$
- $y^2=19 x^6+21 x^5+4 x^4+8 x^3+17 x^2+4 x+35$
- $y^2=36 x^6+34 x^5+19 x^4+37 x^3+46 x^2+20 x+41$
- $y^2=5 x^6+13 x^5+6 x^4+13 x^3+28 x^2+34 x+20$
- and 26 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$The endomorphism algebra of this simple isogeny class is 4.0.614047400.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.47.h_bo | $2$ | (not in LMFDB) |