Invariants
| Base field: | $\F_{47}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 6 x + 47 x^{2} )( 1 + 4 x + 47 x^{2} )$ |
| $1 - 2 x + 70 x^{2} - 94 x^{3} + 2209 x^{4}$ | |
| Frobenius angles: | $\pm0.355830380849$, $\pm0.594230866676$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $216$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2184$ | $5189184$ | $10792605096$ | $23808308299776$ | $52600709427086184$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $46$ | $2346$ | $103954$ | $4879070$ | $229351886$ | $10778983722$ | $506621831090$ | $23811302294014$ | $1119130557658798$ | $52599131701105386$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 216 curves (of which all are hyperelliptic):
- $y^2=40 x^6+40 x^5+45 x^4+21 x^3+16 x^2+19 x$
- $y^2=34 x^6+32 x^5+28 x^4+16 x^3+10 x^2+27 x+40$
- $y^2=25 x^6+34 x^5+37 x^4+12 x^3+13 x^2+2 x+22$
- $y^2=11 x^6+8 x^5+37 x^4+41 x^3+12 x^2+10 x+9$
- $y^2=42 x^6+43 x^5+5 x^4+31 x^3+29 x^2+40 x+11$
- $y^2=26 x^6+38 x^5+13 x^4+45 x^3+13 x^2+38 x+26$
- $y^2=34 x^5+26 x^4+31 x^3+11 x^2+5 x+23$
- $y^2=22 x^6+37 x^4+7 x^3+37 x^2+22$
- $y^2=28 x^6+3 x^5+30 x^3+17 x^2+38 x+31$
- $y^2=16 x^6+45 x^5+39 x^4+28 x^3+18 x^2+32 x+33$
- $y^2=21 x^6+16 x^5+19 x^4+36 x^3+23 x^2+6 x+42$
- $y^2=29 x^6+3 x^4+17 x^3+44 x^2+28$
- $y^2=25 x^6+34 x^5+28 x^4+34 x^3+44 x^2+x+26$
- $y^2=9 x^6+30 x^5+42 x^4+39 x^3+5 x^2+5 x+40$
- $y^2=20 x^6+44 x^5+x^4+8 x^3+35 x^2+8 x+14$
- $y^2=7 x^6+42 x^5+38 x^4+41 x^3+39 x^2+21 x+24$
- $y^2=44 x^6+37 x^5+8 x^4+39 x^3+34 x^2+37 x+27$
- $y^2=25 x^6+42 x^5+31 x^4+2 x^3+20 x^2+5 x+26$
- $y^2=12 x^6+36 x^5+12 x^4+9 x^3+33 x+41$
- $y^2=12 x^6+x^5+29 x^4+5 x^3+35 x^2+43 x+17$
- and 196 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{47}$.
Endomorphism algebra over $\F_{47}$| The isogeny class factors as 1.47.ag $\times$ 1.47.e and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.47.ak_eo | $2$ | (not in LMFDB) |
| 2.47.c_cs | $2$ | (not in LMFDB) |
| 2.47.k_eo | $2$ | (not in LMFDB) |