Properties

Label 2.43.j_bm
Base field $\F_{43}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{43}$
Dimension:  $2$
L-polynomial:  $1 + 9 x + 38 x^{2} + 387 x^{3} + 1849 x^{4}$
Frobenius angles:  $\pm0.407408251406$, $\pm0.925925081928$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-3}, \sqrt{-91})\)
Galois group:  $C_2^2$
Jacobians:  $38$

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2284$ $3407728$ $6390403600$ $11675653089984$ $21609353546697604$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $53$ $1845$ $80372$ $3415129$ $146993963$ $6321307830$ $271819482281$ $11688206930929$ $502592567097836$ $21611482228966725$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 38 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{43^{3}}$.

Endomorphism algebra over $\F_{43}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-91})\).
Endomorphism algebra over $\overline{\F}_{43}$
The base change of $A$ to $\F_{43^{3}}$ is 1.79507.qq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-91}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.aj_bm$2$(not in LMFDB)
2.43.as_gl$3$(not in LMFDB)
2.43.aj_bm$6$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.43.aj_bm$2$(not in LMFDB)
2.43.as_gl$3$(not in LMFDB)
2.43.aj_bm$6$(not in LMFDB)
2.43.a_f$6$(not in LMFDB)
2.43.s_gl$6$(not in LMFDB)
2.43.a_af$12$(not in LMFDB)