Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 9 x + 38 x^{2} + 387 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.407408251406$, $\pm0.925925081928$ |
Angle rank: | $1$ (numerical) |
Number field: | \(\Q(\sqrt{-3}, \sqrt{-91})\) |
Galois group: | $C_2^2$ |
Jacobians: | $38$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2284$ | $3407728$ | $6390403600$ | $11675653089984$ | $21609353546697604$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $53$ | $1845$ | $80372$ | $3415129$ | $146993963$ | $6321307830$ | $271819482281$ | $11688206930929$ | $502592567097836$ | $21611482228966725$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 38 curves (of which all are hyperelliptic):
- $y^2=13 x^6+15 x^5+42 x^3+12 x^2+19 x+33$
- $y^2=38 x^6+26 x^5+28 x^4+34 x^3+35 x^2+6 x+14$
- $y^2=35 x^6+25 x^5+x^4+26 x^2+27 x+31$
- $y^2=15 x^6+41 x^5+19 x^4+34 x^3+40 x^2+34 x+23$
- $y^2=14 x^6+19 x^5+21 x^4+37 x^3+7 x^2+5 x+36$
- $y^2=18 x^6+40 x^5+17 x^4+28 x^3+12 x^2+22 x+1$
- $y^2=11 x^6+39 x^5+20 x^4+9 x^3+29 x+18$
- $y^2=38 x^6+38 x^5+34 x^4+4 x^3+23 x^2+21 x+21$
- $y^2=39 x^6+7 x^5+2 x^4+38 x^3+27 x^2+19 x+29$
- $y^2=33 x^6+8 x^5+39 x^4+26 x^3+27 x^2+9 x+24$
- $y^2=16 x^6+11 x^5+33 x^4+34 x^3+15 x^2+38 x+6$
- $y^2=2 x^6+29 x^5+27 x^4+19 x^3+34 x^2+10 x+9$
- $y^2=13 x^6+40 x^5+21 x^4+28 x^3+7 x^2+x+33$
- $y^2=11 x^6+18 x^5+38 x^4+18 x^3+28 x^2+16 x+31$
- $y^2=30 x^6+11 x^5+x^4+16 x^3+8 x^2+3 x+14$
- $y^2=22 x^6+4 x^5+23 x^4+34 x^3+14 x^2+3 x+22$
- $y^2=x^6+35 x^5+37 x^4+11 x^3+32 x^2+4 x+7$
- $y^2=36 x^6+16 x^5+29 x^4+23 x^3+14 x^2+35 x+15$
- $y^2=36 x^6+3 x^5+24 x^4+8 x^2+18 x+16$
- $y^2=31 x^6+20 x^5+31 x^4+23 x^3+37 x^2+42 x+1$
- and 18 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43^{3}}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-3}, \sqrt{-91})\). |
The base change of $A$ to $\F_{43^{3}}$ is 1.79507.qq 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-91}) \)$)$ |
Base change
This is a primitive isogeny class.