Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 87 x^{2} + 172 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.506503820926$, $\pm0.591849557790$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.3913488.1 |
Galois group: | $D_{4}$ |
Jacobians: | $18$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2113$ | $3720993$ | $6284645188$ | $11670496398249$ | $21615381918749113$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $48$ | $2008$ | $79044$ | $3413620$ | $147034968$ | $6321495454$ | $271817523144$ | $11688198129700$ | $502592643364956$ | $21611482316754088$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 18 curves (of which all are hyperelliptic):
- $y^2=17 x^6+40 x^5+16 x^3+16 x^2+32 x+36$
- $y^2=4 x^6+40 x^5+18 x^4+40 x^3+5 x^2+28 x+39$
- $y^2=31 x^6+38 x^5+x^4+27 x^3+24 x^2+11 x+21$
- $y^2=3 x^6+42 x^5+31 x^4+34 x^3+32 x^2+20 x+13$
- $y^2=42 x^6+33 x^5+9 x^4+22 x^3+8 x^2+12 x+14$
- $y^2=10 x^6+33 x^5+41 x^4+28 x^3+10 x^2+13 x+18$
- $y^2=40 x^6+2 x^5+8 x^4+17 x^3+30 x^2+33 x+37$
- $y^2=34 x^6+30 x^5+23 x^4+8 x^3+8 x^2+17 x+6$
- $y^2=34 x^6+39 x^5+x^4+25 x^3+20 x^2+x+35$
- $y^2=35 x^6+27 x^5+26 x^4+12 x^3+38 x^2+15 x+28$
- $y^2=31 x^6+33 x^5+31 x^4+11 x^3+5 x^2+7 x+26$
- $y^2=30 x^6+36 x^5+18 x^4+11 x^3+32 x^2+10 x+6$
- $y^2=36 x^6+37 x^5+32 x^4+7 x^3+40 x^2+42 x+23$
- $y^2=5 x^6+28 x^4+30 x^3+11 x^2+7 x+14$
- $y^2=x^6+15 x^5+14 x^3+21 x^2+6 x+16$
- $y^2=5 x^6+10 x^5+16 x^4+39 x^3+9 x^2+x+37$
- $y^2=16 x^6+4 x^5+10 x^4+5 x^3+24 x^2+40 x+39$
- $y^2=5 x^6+25 x^5+7 x^4+13 x^3+40 x^2+36 x+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.3913488.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.ae_dj | $2$ | (not in LMFDB) |