Invariants
| Base field: | $\F_{43}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 8 x + 78 x^{2} - 344 x^{3} + 1849 x^{4}$ |
| Frobenius angles: | $\pm0.262612650653$, $\pm0.521836165174$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.2287872.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $140$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1576$ | $3593280$ | $6347549608$ | $11688508646400$ | $21614656923205096$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $36$ | $1942$ | $79836$ | $3418894$ | $147030036$ | $6321471334$ | $271817218380$ | $11688187947166$ | $502592619252228$ | $21611482654265782$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 140 curves (of which all are hyperelliptic):
- $y^2=2 x^6+35 x^5+12 x^4+40 x^3+31 x^2+26 x+39$
- $y^2=2 x^6+5 x^5+37 x^4+34 x^3+31 x^2+26 x+24$
- $y^2=27 x^6+33 x^5+23 x^4+32 x^3+38 x^2+23 x+25$
- $y^2=19 x^6+12 x^5+7 x^4+30 x^3+28 x^2+2 x+39$
- $y^2=27 x^6+26 x^5+2 x^4+27 x^3+3 x^2+40 x+12$
- $y^2=38 x^6+40 x^5+3 x^4+11 x^3+18 x^2+33 x+12$
- $y^2=20 x^6+5 x^5+22 x^4+37 x^3+16 x^2+11 x+41$
- $y^2=16 x^6+3 x^5+5 x^4+24 x^3+20 x^2+31 x+10$
- $y^2=33 x^6+25 x^5+22 x^4+12 x^3+17 x^2+3 x+2$
- $y^2=10 x^6+19 x^5+41 x^4+41 x^3+16 x^2+27 x+3$
- $y^2=36 x^6+11 x^5+15 x^4+35 x^3+34 x^2+20 x+20$
- $y^2=35 x^6+27 x^5+15 x^4+28 x^3+14 x^2+9 x+22$
- $y^2=11 x^6+23 x^5+13 x^4+10 x^3+40 x^2+34 x+30$
- $y^2=15 x^6+36 x^5+7 x^4+20 x^3+5 x^2+27 x+39$
- $y^2=5 x^6+29 x^4+17 x^3+12 x^2+31 x+5$
- $y^2=14 x^6+5 x^5+23 x^4+40 x^3+23 x^2+29 x+18$
- $y^2=16 x^5+41 x^4+19 x^3+41 x^2+25 x+39$
- $y^2=42 x^6+35 x^5+8 x^4+25 x^3+37 x^2+42 x+30$
- $y^2=32 x^6+8 x^5+25 x^4+29 x^3+25 x^2+x+18$
- $y^2=27 x^6+11 x^5+10 x^4+10 x^3+40 x^2+30 x+4$
- and 120 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$| The endomorphism algebra of this simple isogeny class is 4.0.2287872.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.43.i_da | $2$ | (not in LMFDB) |