Invariants
Base field: | $\F_{43}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 4 x + 36 x^{2} - 172 x^{3} + 1849 x^{4}$ |
Frobenius angles: | $\pm0.247420324247$, $\pm0.633709849622$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.776448.1 |
Galois group: | $D_{4}$ |
Jacobians: | $136$ |
Isomorphism classes: | 168 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1710$ | $3526020$ | $6309546030$ | $11702225696400$ | $21617180439659550$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $40$ | $1906$ | $79360$ | $3422902$ | $147047200$ | $6321241474$ | $271817708440$ | $11688200128798$ | $502592551266760$ | $21611482145495986$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 136 curves (of which all are hyperelliptic):
- $y^2=39 x^6+35 x^5+x^4+12 x^3+11 x^2+36 x+12$
- $y^2=40 x^6+28 x^5+4 x^3+37 x^2+19 x+20$
- $y^2=39 x^6+6 x^5+8 x^4+30 x^3+30 x^2+38 x+35$
- $y^2=12 x^6+2 x^5+34 x^4+9 x^3+29 x^2+2 x+27$
- $y^2=4 x^6+28 x^5+7 x^4+10 x^3+14 x^2+9 x+8$
- $y^2=42 x^6+34 x^5+30 x^4+33 x^3+27 x^2+5 x+8$
- $y^2=22 x^6+13 x^5+13 x^4+9 x^3+40 x^2+26 x+36$
- $y^2=16 x^6+18 x^5+25 x^4+15 x^3+41 x^2+x+5$
- $y^2=42 x^6+29 x^5+36 x^4+30 x^3+13 x^2+40 x+24$
- $y^2=35 x^6+29 x^5+8 x^4+13 x^3+5 x^2+2 x+6$
- $y^2=33 x^6+35 x^5+9 x^4+9 x^3+14 x^2+38 x+28$
- $y^2=30 x^6+33 x^5+38 x^4+8 x^3+9 x^2+21 x+10$
- $y^2=10 x^5+16 x^4+7 x^2+5 x+31$
- $y^2=41 x^6+21 x^5+26 x^4+35 x^3+20 x^2+40 x+27$
- $y^2=42 x^6+21 x^5+13 x^4+12 x^3+14 x^2+5 x+26$
- $y^2=17 x^6+41 x^5+15 x^4+4 x^3+33 x^2+41 x+25$
- $y^2=28 x^6+15 x^5+34 x^4+21 x^3+25 x^2+8 x+20$
- $y^2=39 x^6+7 x^5+35 x^4+6 x^3+4 x^2+14 x+24$
- $y^2=31 x^6+16 x^5+28 x^4+39 x^3+3 x^2+34 x+29$
- $y^2=35 x^6+42 x^5+31 x^4+42 x^3+31 x^2+32$
- and 116 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{43}$.
Endomorphism algebra over $\F_{43}$The endomorphism algebra of this simple isogeny class is 4.0.776448.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.43.e_bk | $2$ | (not in LMFDB) |