Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 8 x + 90 x^{2} + 328 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.529161185607$, $\pm0.679014657090$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.76352.1 |
Galois group: | $D_{4}$ |
Jacobians: | $66$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2108$ | $3027088$ | $4704552188$ | $7982019372032$ | $13424569845259708$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $50$ | $1798$ | $68258$ | $2824734$ | $115872690$ | $4750087654$ | $194754376034$ | $7984922224830$ | $327381926959154$ | $13422659634395718$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 66 curves (of which all are hyperelliptic):
- $y^2=32 x^6+11 x^5+4 x^4+40 x^3+31 x^2+34 x+2$
- $y^2=21 x^6+31 x^5+20 x^4+3 x^3+5 x^2+27 x+29$
- $y^2=30 x^6+29 x^5+3 x^4+30 x^3+3 x^2+x+4$
- $y^2=21 x^6+12 x^5+4 x^3+20 x^2+35 x+25$
- $y^2=17 x^6+10 x^5+33 x^3+28 x^2+14 x+11$
- $y^2=23 x^6+36 x^5+36 x^4+7 x^3+4 x^2+19 x+15$
- $y^2=21 x^5+25 x^4+8 x^3+14 x^2+37 x+21$
- $y^2=18 x^6+21 x^5+2 x^4+7 x^3+23 x^2+33 x+2$
- $y^2=5 x^6+31 x^5+22 x^4+16 x^3+31 x+13$
- $y^2=20 x^6+36 x^5+30 x^4+37 x^3+27 x^2+32 x+18$
- $y^2=20 x^6+34 x^5+20 x^4+18 x^3+22 x^2+24 x+2$
- $y^2=30 x^6+37 x^5+6 x^4+6 x^3+38 x^2+13 x+9$
- $y^2=27 x^6+10 x^5+24 x^4+5 x^3+18 x^2+16 x+26$
- $y^2=18 x^6+30 x^5+6 x^4+7 x^3+20 x^2+3 x+30$
- $y^2=8 x^6+39 x^5+29 x^3+17 x^2+25 x+4$
- $y^2=37 x^6+35 x^5+34 x^4+10 x^3+35 x^2+35 x$
- $y^2=40 x^6+22 x^5+26 x^4+28 x^3+39 x^2+28 x+9$
- $y^2=4 x^6+21 x^5+11 x^4+38 x^3+24 x^2+22 x+22$
- $y^2=29 x^6+29 x^5+36 x^4+20 x^3+29 x^2+37 x+4$
- $y^2=13 x^6+20 x^5+31 x^4+36 x^3+22 x^2+16$
- and 46 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is 4.0.76352.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.ai_dm | $2$ | (not in LMFDB) |