Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $( 1 - 12 x + 41 x^{2} )( 1 - 8 x + 41 x^{2} )$ |
| $1 - 20 x + 178 x^{2} - 820 x^{3} + 1681 x^{4}$ | |
| Frobenius angles: | $\pm0.113551764296$, $\pm0.285223287477$ |
| Angle rank: | $2$ (numerical) |
| Jacobians: | $20$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1020$ | $2754000$ | $4765285980$ | $7992152064000$ | $13423760198305500$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $22$ | $1638$ | $69142$ | $2828318$ | $115865702$ | $4750093638$ | $194754096902$ | $7984927070398$ | $327381978057142$ | $13422659728370598$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 20 curves (of which all are hyperelliptic):
- $y^2=38 x^5+23 x^4+37 x^3+25 x^2+28 x$
- $y^2=13 x^6+2 x^5+9 x^4+40 x^3+24 x^2+8 x+38$
- $y^2=20 x^6+32 x^5+12 x^4+10 x^3+9 x^2+27 x+31$
- $y^2=24 x^6+31 x^5+14 x^4+5 x^3+13 x^2+x+13$
- $y^2=37 x^6+25 x^5+15 x^4+35 x^3+15 x^2+25 x+37$
- $y^2=35 x^6+22 x^5+16 x^4+2 x^3+22 x^2+30 x+11$
- $y^2=12 x^6+31 x^5+12 x^4+36 x^3+33 x^2+17 x+30$
- $y^2=38 x^6+3 x^5+3 x^4+29 x^3+19 x^2+22 x+3$
- $y^2=5 x^6+15 x^5+40 x^4+30 x^3+40 x^2+15 x+5$
- $y^2=15 x^6+18 x^5+6 x^4+20 x^3+6 x^2+18 x+15$
- $y^2=34 x^6+11 x^5+39 x^4+9 x^3+10 x^2+29 x+14$
- $y^2=35 x^6+11 x^5+40 x^4+29 x^3+37 x^2+26 x+14$
- $y^2=12 x^6+12 x^5+9 x^4+31 x^3+9 x^2+12 x+12$
- $y^2=27 x^6+8 x^5+35 x^4+4 x^3+12 x^2+27 x+34$
- $y^2=12 x^6+25 x^5+38 x^4+3 x^3+6 x^2+34 x+22$
- $y^2=20 x^6+33 x^4+29 x^3+39 x^2+39 x+5$
- $y^2=34 x^6+33 x^5+38 x^4+39 x^3+38 x^2+33 x+34$
- $y^2=27 x^6+16 x^4+28 x^3+16 x^2+27$
- $y^2=15 x^6+32 x^5+31 x^4+31 x^3+31 x^2+32 x+15$
- $y^2=38 x^6+24 x^5+9 x^4+38 x^3+40 x^2+11 x+7$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The isogeny class factors as 1.41.am $\times$ 1.41.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.