Invariants
| Base field: | $\F_{41}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 - 20 x + 176 x^{2} - 820 x^{3} + 1681 x^{4}$ | 
| Frobenius angles: | $\pm0.0753103869890$, $\pm0.299287056274$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.555264.3 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $4$ | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1018$ | $2746564$ | $4756935850$ | $7987106988304$ | $13421744275906378$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $22$ | $1634$ | $69022$ | $2826534$ | $115848302$ | $4749973058$ | $194753505542$ | $7984925174974$ | $327381974247862$ | $13422659707241954$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=25 x^6+15 x^5+29 x^4+4 x^3+25 x^2+9 x+9$
 - $y^2=19 x^6+25 x^5+15 x^4+32 x^3+x^2+19 x+3$
 - $y^2=3 x^6+16 x^5+36 x^4+27 x^3+10 x^2+25 x+32$
 - $y^2=7 x^6+13 x^5+26 x^4+31 x^3+31 x^2+9 x+37$
 
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is 4.0.555264.3. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.41.u_gu | $2$ | (not in LMFDB) |