Properties

Label 2.41.au_gt
Base Field $\F_{41}$
Dimension $2$
Ordinary Yes
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{41}$
Dimension:  $2$
L-polynomial:  $1 - 20 x + 175 x^{2} - 820 x^{3} + 1681 x^{4}$
Frobenius angles:  $\pm0.0504478270356$, $\pm0.305285834519$
Angle rank:  $2$ (numerical)
Number field:  4.0.352016.1
Galois group:  $D_{4}$
Jacobians:  4

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 4 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 1017 2742849 4752762372 7984567838601 13420701599035977 22562544573642827664 37928994452577705608217 63759009316294399477055625 107178937575579509291106372612 180167786067588689632148122509729

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 22 1632 68962 2825636 115839302 4749905142 194753078822 7984922524228 327381954578482 13422659541937152

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{41}$
The endomorphism algebra of this simple isogeny class is 4.0.352016.1.
All geometric endomorphisms are defined over $\F_{41}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
2.41.u_gt$2$(not in LMFDB)