Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 20 x + 175 x^{2} - 820 x^{3} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.0504478270356$, $\pm0.305285834519$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.352016.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $4$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1017$ | $2742849$ | $4752762372$ | $7984567838601$ | $13420701599035977$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $22$ | $1632$ | $68962$ | $2825636$ | $115839302$ | $4749905142$ | $194753078822$ | $7984922524228$ | $327381954578482$ | $13422659541937152$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=25 x^6+22 x^5+22 x^4+3 x^3+36 x^2+17 x+15$
- $y^2=19 x^6+23 x^5+x^4+35 x^3+7 x^2+3 x+38$
- $y^2=3 x^6+20 x^5+7 x^4+24 x^3+40 x^2+4 x+1$
- $y^2=5 x^6+32 x^5+11 x^4+13 x^3+15 x^2+29 x+1$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is 4.0.352016.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.u_gt | $2$ | (not in LMFDB) |