Properties

Label 2.41.a_ay
Base field $\F_{41}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{41}$
Dimension:  $2$
L-polynomial:  $1 - 24 x^{2} + 1681 x^{4}$
Frobenius angles:  $\pm0.202725979435$, $\pm0.797274020565$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\sqrt{-58}, \sqrt{106})\)
Galois group:  $C_2^2$
Jacobians:  $8$
Isomorphism classes:  32

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1658$ $2748964$ $4750211450$ $8000683788304$ $13422659079289178$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $42$ $1634$ $68922$ $2831334$ $115856202$ $4750318658$ $194754273882$ $7984921008574$ $327381934393962$ $13422658848425954$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{41^{2}}$.

Endomorphism algebra over $\F_{41}$
The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{-58}, \sqrt{106})\).
Endomorphism algebra over $\overline{\F}_{41}$
The base change of $A$ to $\F_{41^{2}}$ is 1.1681.ay 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1537}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.41.a_y$4$(not in LMFDB)