Invariants
| Base field: | $\F_{37}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $1 + 14 x + 108 x^{2} + 518 x^{3} + 1369 x^{4}$ | 
| Frobenius angles: | $\pm0.582746945236$, $\pm0.851937754380$ | 
| Angle rank: | $2$ (numerical) | 
| Number field: | 4.0.302400.2 | 
| Galois group: | $D_{4}$ | 
| Jacobians: | $36$ | 
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2010$ | $1901460$ | $2553747210$ | $3511350123600$ | $4808905667870250$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $52$ | $1390$ | $50416$ | $1873558$ | $69348592$ | $2565822670$ | $94930667716$ | $3512484416158$ | $129961744734292$ | $4808584262045950$ | 
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 36 curves (of which all are hyperelliptic):
- $y^2=33 x^6+10 x^5+3 x^4+11 x^3+19 x^2+14 x+4$
- $y^2=3 x^6+17 x^5+28 x^4+7 x^3+28 x^2+27 x+25$
- $y^2=36 x^6+12 x^5+27 x^4+11 x^3+11 x^2+29 x+16$
- $y^2=9 x^6+25 x^5+12 x^4+14 x^3+10 x^2+17 x+23$
- $y^2=22 x^6+23 x^5+13 x^4+19 x^3+6 x^2+17 x+2$
- $y^2=4 x^6+3 x^5+31 x^4+34 x^3+26 x^2+27 x+30$
- $y^2=10 x^6+x^5+13 x^4+31 x^3+27 x^2+30 x+3$
- $y^2=21 x^6+29 x^5+6 x^4+17 x^3+14 x^2+28 x+21$
- $y^2=26 x^6+12 x^5+26 x^4+21 x^3+23 x^2+24 x+12$
- $y^2=4 x^6+33 x^5+28 x^4+32 x^3+29 x^2+4 x+9$
- $y^2=9 x^6+35 x^5+19 x^4+20 x^3+35 x^2+13 x$
- $y^2=13 x^6+5 x^5+11 x^4+3 x^3+12 x^2+15 x+34$
- $y^2=9 x^6+20 x^5+15 x^4+31 x^3+2 x^2+9 x+34$
- $y^2=3 x^6+19 x^5+24 x^4+14 x^3+17 x^2+18 x+2$
- $y^2=34 x^6+6 x^5+11 x^3+5 x+34$
- $y^2=25 x^6+13 x^5+16 x^4+29 x^3+2 x^2+29 x+4$
- $y^2=28 x^6+33 x^5+x^4+26 x^3+18 x^2+10 x+11$
- $y^2=30 x^6+20 x^5+6 x^4+33 x^3+24 x^2+6 x+26$
- $y^2=25 x^6+12 x^5+11 x^4+33 x^3+28 x^2+31 x+1$
- $y^2=30 x^6+10 x^5+x^3+17 x^2+10 x+4$
- and 16 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37}$.
Endomorphism algebra over $\F_{37}$| The endomorphism algebra of this simple isogeny class is 4.0.302400.2. | 
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change | 
|---|---|---|
| 2.37.ao_ee | $2$ | (not in LMFDB) | 
