Invariants
| Base field: | $\F_{37}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 61 x^{2} + 1369 x^{4}$ |
| Frobenius angles: | $\pm0.404222355154$, $\pm0.595777644846$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(\sqrt{13}, \sqrt{-15})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $120$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $3$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1431$ | $2047761$ | $2565702864$ | $3508799566041$ | $4808584234948311$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $38$ | $1492$ | $50654$ | $1872196$ | $69343958$ | $2565679318$ | $94931877134$ | $3512485017988$ | $129961739795078$ | $4808584097478772$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 120 curves (of which all are hyperelliptic):
- $y^2=12 x^6+16 x^5+30 x^4+6 x^3+14 x^2+36 x+19$
- $y^2=24 x^6+32 x^5+23 x^4+12 x^3+28 x^2+35 x+1$
- $y^2=26 x^6+8 x^5+9 x^4+31 x^3+x^2+2 x+22$
- $y^2=15 x^6+16 x^5+18 x^4+25 x^3+2 x^2+4 x+7$
- $y^2=26 x^6+34 x^5+9 x^4+33 x^3+19 x^2+29 x+20$
- $y^2=15 x^6+31 x^5+18 x^4+29 x^3+x^2+21 x+3$
- $y^2=26 x^6+9 x^5+18 x^4+13 x^3+27 x^2+32 x+9$
- $y^2=15 x^6+18 x^5+36 x^4+26 x^3+17 x^2+27 x+18$
- $y^2=6 x^6+13 x^5+5 x^4+26 x^3+26 x^2+7 x+8$
- $y^2=12 x^6+26 x^5+10 x^4+15 x^3+15 x^2+14 x+16$
- $y^2=13 x^6+7 x^5+17 x^4+17 x^3+2 x^2+30 x+18$
- $y^2=35 x^6+8 x^5+22 x^4+9 x^3+18 x^2+21 x+26$
- $y^2=33 x^6+16 x^5+7 x^4+18 x^3+36 x^2+5 x+15$
- $y^2=33 x^6+4 x^5+15 x^4+4 x^3+4 x^2+x+9$
- $y^2=29 x^6+8 x^5+30 x^4+8 x^3+8 x^2+2 x+18$
- $y^2=14 x^6+31 x^5+30 x^3+13 x^2+11 x+17$
- $y^2=28 x^6+25 x^5+23 x^3+26 x^2+22 x+34$
- $y^2=30 x^6+10 x^5+3 x^4+12 x^3+16 x^2+4 x+15$
- $y^2=23 x^6+20 x^5+6 x^4+24 x^3+32 x^2+8 x+30$
- $y^2=5 x^6+25 x^5+34 x^4+18 x^3+33 x^2+31 x+5$
- and 100 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{37^{2}}$.
Endomorphism algebra over $\F_{37}$| The endomorphism algebra of this simple isogeny class is \(\Q(\sqrt{13}, \sqrt{-15})\). |
| The base change of $A$ to $\F_{37^{2}}$ is 1.1369.cj 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-195}) \)$)$ |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.37.a_acj | $4$ | (not in LMFDB) |