Invariants
| Base field: | $\F_{7^{3}}$ | 
| Dimension: | $2$ | 
| L-polynomial: | $( 1 - 36 x + 343 x^{2} )^{2}$ | 
| $1 - 72 x + 1982 x^{2} - 24696 x^{3} + 117649 x^{4}$ | |
| Frobenius angles: | $\pm0.0756263964363$, $\pm0.0756263964363$ | 
| Angle rank: | $1$ (numerical) | 
This isogeny class is not simple, not primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ | 
| Slopes: | $[0, 0, 1, 1]$ | 
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | 
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $94864$ | $13698361600$ | $1627638013248016$ | $191577444395420160000$ | $22539324833061912486832144$ | 
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ | 
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $272$ | $116430$ | $40334384$ | $13841013598$ | $4747558254032$ | $1628413574543790$ | $558545864358862064$ | $191581231398501988798$ | $65712362364085437544592$ | $22539340290705947852427150$ | 
Jacobians and polarizations
This isogeny class contains a Jacobian and hence is principally polarizable.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{7^{3}}$.
Endomorphism algebra over $\F_{7^{3}}$| The isogeny class factors as 1.343.abk 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-19}) \)$)$ | 
Base change
This isogeny class is not primitive. It is a base change from the following isogeny classes over subfields of $\F_{7^{3}}$.
| Subfield | Primitive Model | 
| $\F_{7}$ | 2.7.ad_c | 
| $\F_{7}$ | 2.7.g_x |