Properties

Label 2.343.acr_cud
Base field $\F_{7^{3}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7^{3}}$
Dimension:  $2$
L-polynomial:  $1 - 69 x + 1875 x^{2} - 23667 x^{3} + 117649 x^{4}$
Frobenius angles:  $\pm0.0885013930197$, $\pm0.142666645498$
Angle rank:  $2$ (numerical)
Number field:  4.0.665725.1
Galois group:  $D_{4}$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $95789$ $13722827929$ $1627954277111579$ $191580506576164759741$ $22539349424988989118770864$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $275$ $116639$ $40342223$ $13841234835$ $4747563433940$ $1628413678348643$ $558545866126090901$ $191581231422394616659$ $65712362364267537679229$ $22539340290703308616638014$

Jacobians and polarizations

This isogeny class contains a Jacobian and hence is principally polarizable.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7^{3}}$.

Endomorphism algebra over $\F_{7^{3}}$
The endomorphism algebra of this simple isogeny class is 4.0.665725.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.343.cr_cud$2$(not in LMFDB)