Properties

Label 2.343.acq_csp
Base field $\F_{7^{3}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7^{3}}$
Dimension:  $2$
L-polynomial:  $1 - 68 x + 1835 x^{2} - 23324 x^{3} + 117649 x^{4}$
Frobenius angles:  $\pm0.0465139812262$, $\pm0.178714399182$
Angle rank:  $2$ (numerical)
Number field:  4.0.985488.2
Galois group:  $D_{4}$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $96093$ $13729479561$ $1628007543347364$ $191580550415747700921$ $22539344425871439369689973$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $276$ $116696$ $40343544$ $13841238004$ $4747562380956$ $1628413624922006$ $558545864358288180$ $191581231375804072228$ $65712362363233352057448$ $22539340290683770190925896$

Jacobians and polarizations

This isogeny class contains a Jacobian and hence is principally polarizable.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7^{3}}$.

Endomorphism algebra over $\F_{7^{3}}$
The endomorphism algebra of this simple isogeny class is 4.0.985488.2.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.343.cq_csp$2$(not in LMFDB)