Properties

Label 2.343.aco_cqa
Base field $\F_{7^{3}}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7^{3}}$
Dimension:  $2$
L-polynomial:  $1 - 66 x + 1768 x^{2} - 22638 x^{3} + 117649 x^{4}$
Frobenius angles:  $\pm0.0876293779317$, $\pm0.194258099826$
Angle rank:  $2$ (numerical)
Number field:  4.0.442176.1
Galois group:  $D_{4}$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $96714$ $13745187108$ $1628197920094050$ $191582247505669571664$ $22539356900488314482946354$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $278$ $116830$ $40348262$ $13841360614$ $4747565008538$ $1628413674474670$ $558545865241860746$ $191581231392231260734$ $65712362363577451051526$ $22539340290691704076015150$

Jacobians and polarizations

This isogeny class contains a Jacobian and hence is principally polarizable.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7^{3}}$.

Endomorphism algebra over $\F_{7^{3}}$
The endomorphism algebra of this simple isogeny class is 4.0.442176.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.343.co_cqa$2$(not in LMFDB)