Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 2 x + 31 x^{2} )( 1 + 7 x + 31 x^{2} )$ |
$1 + 5 x + 48 x^{2} + 155 x^{3} + 961 x^{4}$ | |
Frobenius angles: | $\pm0.442517941024$, $\pm0.716379308692$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $56$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1170$ | $994500$ | $883635480$ | $853177572000$ | $819309867801750$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $37$ | $1033$ | $29662$ | $923833$ | $28618027$ | $887496298$ | $27513261757$ | $852889579153$ | $26439610200802$ | $819628323489073$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 56 curves (of which all are hyperelliptic):
- $y^2=8 x^6+5 x^5+23 x^4+8 x^3+3 x^2+27 x+16$
- $y^2=16 x^6+8 x^5+19 x^4+3 x^3+14 x^2+3 x+12$
- $y^2=18 x^6+10 x^5+20 x^4+26 x^2+25 x$
- $y^2=7 x^6+9 x^5+5 x^4+21 x^3+7 x^2+3 x+9$
- $y^2=22 x^6+27 x^5+23 x^4+29 x^3+14 x^2+3 x+16$
- $y^2=27 x^6+29 x^5+15 x^4+6 x^3+12 x^2+10 x+5$
- $y^2=4 x^6+26 x^5+9 x^4+10 x^3+16 x^2+20 x+30$
- $y^2=22 x^6+7 x^5+20 x^4+16 x^3+x^2+2 x+29$
- $y^2=10 x^6+27 x^5+x^4+28 x^3+27 x^2+9 x+20$
- $y^2=14 x^6+30 x^5+23 x^4+19 x^3+25 x^2+x+28$
- $y^2=27 x^6+3 x^5+14 x^4+4 x^3+12 x^2+30 x+25$
- $y^2=5 x^6+11 x^5+14 x^4+5 x^3+9 x^2+5 x+17$
- $y^2=18 x^6+13 x^5+30 x^4+2 x^3+30 x^2+30 x+19$
- $y^2=7 x^6+4 x^5+18 x^4+2 x^3+4 x^2+23 x+5$
- $y^2=4 x^6+10 x^5+14 x^4+2 x^3+20 x^2+30 x+29$
- $y^2=8 x^6+28 x^5+12 x^4+24 x^3+29 x^2+20 x+2$
- $y^2=28 x^6+29 x^5+5 x^4+19 x^2+14 x+8$
- $y^2=26 x^6+9 x^5+30 x^4+19 x^2+23 x+27$
- $y^2=6 x^6+21 x^5+26 x^4+16 x^3+7 x+11$
- $y^2=23 x^6+15 x^5+3 x^4+7 x^3+19 x^2+6 x+17$
- and 36 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The isogeny class factors as 1.31.ac $\times$ 1.31.h and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.