Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 4 x + 31 x^{2} )( 1 + 7 x + 31 x^{2} )$ |
$1 + 3 x + 34 x^{2} + 93 x^{3} + 961 x^{4}$ | |
Frobenius angles: | $\pm0.383045975359$, $\pm0.716379308692$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $76$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1092$ | $982800$ | $887468400$ | $854332315200$ | $819254847805212$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $35$ | $1021$ | $29792$ | $925081$ | $28616105$ | $887433118$ | $27513124415$ | $852891620881$ | $26439622160672$ | $819628287497701$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 76 curves (of which all are hyperelliptic):
- $y^2=9 x^6+30 x^5+11 x^4+7 x^3+18 x+24$
- $y^2=14 x^6+14 x^5+22 x^3+15 x^2+22 x+8$
- $y^2=13 x^6+29 x^5+20 x^4+7 x^3+8 x^2+30 x+24$
- $y^2=4 x^6+23 x^5+28 x^4+17 x^3+27 x^2+7 x+16$
- $y^2=29 x^6+8 x^5+19 x^4+2 x^3+7 x^2+12 x+23$
- $y^2=10 x^6+3 x^5+26 x^4+18 x^3+25 x^2+29 x+11$
- $y^2=5 x^6+7 x^5+6 x^3+2 x^2+13 x+4$
- $y^2=4 x^6+6 x^5+18 x^4+4 x^3+20 x^2+27 x+4$
- $y^2=3 x^6+3 x^3+18$
- $y^2=27 x^6+29 x^5+8 x^4+14 x^2+20 x+8$
- $y^2=5 x^5+25 x^4+21 x^3+18 x^2+x+15$
- $y^2=15 x^6+22 x^5+22 x^4+22 x^3+23 x^2+3 x+25$
- $y^2=28 x^5+27 x^4+12 x^3+5 x^2+10 x+19$
- $y^2=24 x^6+2 x^5+3 x^4+11 x^3+10 x^2+3 x+14$
- $y^2=28 x^6+x^5+15 x^4+20 x^3+x^2+30 x+27$
- $y^2=10 x^6+16 x^5+22 x^4+12 x^3+13 x^2+4 x+14$
- $y^2=23 x^6+5 x^5+30 x^4+16 x^3+4 x^2+3 x+19$
- $y^2=24 x^6+21 x^5+26 x^4+7 x^3+16 x^2+3 x+22$
- $y^2=13 x^6+6 x^4+19 x^3+28 x^2+29 x+18$
- $y^2=16 x^6+3 x^4+12 x^3+6 x^2+19 x+22$
- and 56 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31^{6}}$.
Endomorphism algebra over $\F_{31}$The isogeny class factors as 1.31.ae $\times$ 1.31.h and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{31^{6}}$ is 1.887503681.acafa 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-3}) \)$)$ |
- Endomorphism algebra over $\F_{31^{2}}$
The base change of $A$ to $\F_{31^{2}}$ is 1.961.n $\times$ 1.961.bu. The endomorphism algebra for each factor is: - Endomorphism algebra over $\F_{31^{3}}$
The base change of $A$ to $\F_{31^{3}}$ is 1.29791.alw $\times$ 1.29791.lw. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.