Properties

Label 2.31.at_fv
Base field $\F_{31}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{31}$
Dimension:  $2$
L-polynomial:  $1 - 19 x + 151 x^{2} - 589 x^{3} + 961 x^{4}$
Frobenius angles:  $\pm0.0974224575311$, $\pm0.228740076827$
Angle rank:  $2$ (numerical)
Number field:  \(\Q(\zeta_{5})\)
Galois group:  $C_4$
Jacobians:  $3$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $505$ $869105$ $886957255$ $854000824205$ $819891613750000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $13$ $903$ $29773$ $924723$ $28638348$ $887542563$ $27512689903$ $852890868723$ $26439621574123$ $819628308589198$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{31}$.

Endomorphism algebra over $\F_{31}$
The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{5})\).

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
2.31.t_fv$2$(not in LMFDB)
2.31.ae_bu$5$(not in LMFDB)
2.31.b_abn$5$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.31.t_fv$2$(not in LMFDB)
2.31.ae_bu$5$(not in LMFDB)
2.31.b_abn$5$(not in LMFDB)
2.31.l_cj$5$(not in LMFDB)
2.31.l_dn$5$(not in LMFDB)
2.31.al_cj$10$(not in LMFDB)
2.31.al_dn$10$(not in LMFDB)
2.31.ab_abn$10$(not in LMFDB)
2.31.e_bu$10$(not in LMFDB)