Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 19 x + 151 x^{2} - 589 x^{3} + 961 x^{4}$ |
Frobenius angles: | $\pm0.0974224575311$, $\pm0.228740076827$ |
Angle rank: | $2$ (numerical) |
Number field: | \(\Q(\zeta_{5})\) |
Galois group: | $C_4$ |
Jacobians: | $3$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $505$ | $869105$ | $886957255$ | $854000824205$ | $819891613750000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $13$ | $903$ | $29773$ | $924723$ | $28638348$ | $887542563$ | $27512689903$ | $852890868723$ | $26439621574123$ | $819628308589198$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=26 x^5+28$
- $y^2=6 x^6+20 x^5+12 x^4+2 x^3+30 x^2+21 x$
- $y^2=3 x^6+22 x^4+25 x^3+18 x^2+14 x+22$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{5})\). |
Base change
This is a primitive isogeny class.