Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 17 x + 129 x^{2} - 527 x^{3} + 961 x^{4}$ |
Frobenius angles: | $\pm0.0793535070825$, $\pm0.311738106719$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.284445.1 |
Galois group: | $D_{4}$ |
Jacobians: | $4$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $547$ | $894345$ | $890010025$ | $853195292205$ | $819474555124912$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $15$ | $931$ | $29877$ | $923851$ | $28623780$ | $887444503$ | $27512392755$ | $852891761251$ | $26439636995637$ | $819628386019726$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which all are hyperelliptic):
- $y^2=22 x^6+5 x^5+29 x^4+17 x^3+3 x^2+23 x+6$
- $y^2=21 x^6+18 x^5+25 x^4+20 x^3+15 x$
- $y^2=30 x^6+21 x^5+30 x^4+22 x^3+23 x^2+6 x+23$
- $y^2=24 x^6+4 x^5+27 x^4+25 x^3+20 x^2+x+21$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is 4.0.284445.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.31.r_ez | $2$ | (not in LMFDB) |