Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 16 x + 124 x^{2} - 496 x^{3} + 961 x^{4}$ |
Frobenius angles: | $\pm0.179349407864$, $\pm0.298567125522$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.182528.1 |
Galois group: | $D_{4}$ |
Jacobians: | $8$ |
This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
$p$-rank: | $1$ |
Slopes: | $[0, 1/2, 1/2, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $574$ | $917252$ | $898540174$ | $855469574288$ | $819925631796334$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $16$ | $954$ | $30160$ | $926310$ | $28639536$ | $887514330$ | $27512526064$ | $852890779518$ | $26439624254224$ | $819628298555674$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):
- $y^2=11 x^6+2 x^5+15 x^4+30 x^3+27 x^2+10 x+15$
- $y^2=2 x^6+23 x^5+28 x^4+20 x^3+18 x^2+5 x+8$
- $y^2=16 x^5+25 x^4+21 x^3+25 x^2+8 x+9$
- $y^2=26 x^6+13 x^5+23 x^4+24 x^2+16 x+18$
- $y^2=29 x^6+12 x^4+16 x^3+2 x^2+12 x+21$
- $y^2=21 x^6+14 x^5+18 x^4+2 x^3+30 x^2+28 x+14$
- $y^2=23 x^6+20 x^5+23 x^4+22 x^3+7 x^2+13 x+29$
- $y^2=24 x^6+26 x^5+10 x^4+22 x^3+6 x^2+22 x+29$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The endomorphism algebra of this simple isogeny class is 4.0.182528.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.31.q_eu | $2$ | (not in LMFDB) |