Invariants
Base field: | $\F_{31}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 10 x + 31 x^{2} )( 1 - 6 x + 31 x^{2} )$ |
$1 - 16 x + 122 x^{2} - 496 x^{3} + 961 x^{4}$ | |
Frobenius angles: | $\pm0.145000771013$, $\pm0.318871840175$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $16$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $572$ | $912912$ | $895642748$ | $854485632000$ | $819737800390652$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $16$ | $950$ | $30064$ | $925246$ | $28632976$ | $887500982$ | $27512698096$ | $852892950526$ | $26439637509904$ | $819628343423030$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=26 x^6+15 x^5+5 x^4+7 x^3+22 x^2+19 x+5$
- $y^2=2 x^6+24 x^5+2 x^4+17 x^3+14 x^2+21 x+12$
- $y^2=14 x^6+10 x^5+9 x^4+26 x^3+11 x^2+12 x+7$
- $y^2=29 x^6+14 x^5+8 x^4+23 x^3+19 x^2+20 x+9$
- $y^2=28 x^6+5 x^5+25 x^4+6 x^3+28 x^2+15 x+22$
- $y^2=7 x^6+17 x^5+22 x^4+29 x^3+22 x^2+17 x+7$
- $y^2=23 x^6+27 x^5+7 x^4+27 x^3+5 x^2+22 x+27$
- $y^2=29 x^6+16 x^5+29 x^4+16 x^3+29 x^2+16 x+29$
- $y^2=12 x^6+28 x^5+3 x^4+22 x^3+17 x^2+7 x+17$
- $y^2=9 x^6+21 x^5+27 x^4+2 x^3+28 x^2+24 x$
- $y^2=29 x^5+26 x^4+x^3+26 x^2+29 x$
- $y^2=2 x^6+25 x^5+6 x^4+23 x^3+6 x^2+25 x+2$
- $y^2=23 x^6+3 x^5+4 x^4+5 x^3+11 x^2+24 x+20$
- $y^2=23 x^6+14 x^5+23 x^4+14 x^3+23 x^2+14 x+23$
- $y^2=12 x^6+14 x^5+25 x^4+22 x^3+22 x^2+26 x+16$
- $y^2=18 x^6+4 x^5+8 x^4+18 x^3+x^2+2 x+5$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{31}$.
Endomorphism algebra over $\F_{31}$The isogeny class factors as 1.31.ak $\times$ 1.31.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.31.ae_c | $2$ | (not in LMFDB) |
2.31.e_c | $2$ | (not in LMFDB) |
2.31.q_es | $2$ | (not in LMFDB) |