Properties

Label 2.31.aq_es
Base field $\F_{31}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{31}$
Dimension:  $2$
L-polynomial:  $( 1 - 10 x + 31 x^{2} )( 1 - 6 x + 31 x^{2} )$
  $1 - 16 x + 122 x^{2} - 496 x^{3} + 961 x^{4}$
Frobenius angles:  $\pm0.145000771013$, $\pm0.318871840175$
Angle rank:  $2$ (numerical)
Jacobians:  $16$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $572$ $912912$ $895642748$ $854485632000$ $819737800390652$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $16$ $950$ $30064$ $925246$ $28632976$ $887500982$ $27512698096$ $852892950526$ $26439637509904$ $819628343423030$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{31}$.

Endomorphism algebra over $\F_{31}$
The isogeny class factors as 1.31.ak $\times$ 1.31.ag and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.31.ae_c$2$(not in LMFDB)
2.31.e_c$2$(not in LMFDB)
2.31.q_es$2$(not in LMFDB)