Properties

Label 2.31.ao_dx
Base field $\F_{31}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{31}$
Dimension:  $2$
L-polynomial:  $1 - 14 x + 101 x^{2} - 434 x^{3} + 961 x^{4}$
Frobenius angles:  $\pm0.134071731867$, $\pm0.388001791450$
Angle rank:  $2$ (numerical)
Number field:  4.0.3624000.1
Galois group:  $D_{4}$
Jacobians:  $8$
Isomorphism classes:  16

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $615$ $929265$ $893371140$ $852806005065$ $819483595134375$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $18$ $968$ $29988$ $923428$ $28624098$ $887521718$ $27513147918$ $852894585988$ $26439630610428$ $819628261213448$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 8 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{31}$.

Endomorphism algebra over $\F_{31}$
The endomorphism algebra of this simple isogeny class is 4.0.3624000.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.31.o_dx$2$(not in LMFDB)